Stephen J. Headey
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen J. Headey.
Trends in Endocrinology and Metabolism | 2005
Leon A. Bach; Stephen J. Headey; Raymond S. Norton
The six insulin-like growth factor (IGF)-binding proteins (IGFBPs) are important regulators of IGF actions. IGF-independent actions of several IGFBPs have also been described. IGFBPs contain highly conserved N- and C-terminal domains, both of which are important for high-affinity IGF binding. The C-domain also binds a large number of other biomolecules, thereby modulating IGF binding and mediating IGF-independent effects. The 3D structures of the IGF-binding region of the N-domain of IGFBP-5 and the entire C-domain of IGFBP-6 have been solved recently, providing new insights into IGFBP modulation of IGF actions, and structural studies might be expected to do the same for IGF-independent actions. IGFBP-based therapies for diseases such as cancer are promising, and this recent progress will enhance their development.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Amy L. Robertson; Stephen J. Headey; Helen M. Saunders; Heath Ecroyd; Martin J. Scanlon; John A. Carver; Stephen P. Bottomley
Small heat-shock proteins (sHsps) are molecular chaperones that play an important protective role against cellular protein misfolding by interacting with partially unfolded proteins on their off-folding pathway, preventing their aggregation. Polyglutamine (polyQ) repeat expansion leads to the formation of fibrillar protein aggregates and neuronal cell death in nine diseases, including Huntington disease and the spinocerebellar ataxias (SCAs). There is evidence that sHsps have a role in suppression of polyQ-induced neurodegeneration; for example, the sHsp alphaB-crystallin (αB-c) has been identified as a suppressor of SCA3 toxicity in a Drosophila model. However, the molecular mechanism for this suppression is unknown. In this study we tested the ability of αB-c to suppress the aggregation of a polyQ protein. We found that αB-c does not inhibit the formation of SDS-insoluble polyQ fibrils. We further tested the effect of αB-c on the aggregation of ataxin-3, a polyQ protein that aggregates via a two-stage aggregation mechanism. The first stage involves association of the N-terminal Josephin domain followed by polyQ-mediated interactions and the formation of SDS-resistant mature fibrils. Our data show that αB-c potently inhibits the first stage of ataxin-3 aggregation; however, the second polyQ-dependent stage can still proceed. By using NMR spectroscopy, we have determined that αB-c interacts with an extensive region on the surface of the Josephin domain. These data provide an example of a domain/region flanking an amyloidogenic sequence that has a critical role in modulating aggregation of a polypeptide and plays a role in the interaction with molecular chaperones to prevent this aggregation.
Journal of Biomolecular Screening | 2013
Jerome Wielens; Stephen J. Headey; David I. Rhodes; Roger J. Mulder; Olan Dolezal; John Joseph Deadman; Janet Newman; David K. Chalmers; Michael W. Parker; Thomas S. Peat; Martin J. Scanlon
Fragment screening is becoming widely accepted as a technique to identify hit compounds for the development of novel lead compounds. In neighboring laboratories, we have recently, and independently, performed a fragment screening campaign on the HIV-1 integrase core domain (IN) using similar commercially purchased fragment libraries. The two campaigns used different screening methods for the preliminary identification of fragment hits; one used saturation transfer difference nuclear magnetic resonance spectroscopy (STD-NMR), and the other used surface plasmon resonance (SPR) spectroscopy. Both initial screens were followed by X-ray crystallography. Using the STD-NMR/X-ray approach, 15 IN/fragment complexes were identified, whereas the SPR/X-ray approach found 6 complexes. In this article, we compare the approaches that were taken by each group and the results obtained, and we look at what factors could potentially influence the final results. We find that despite using different approaches with little overlap of initial hits, both approaches identified binding sites on IN that provided a basis for fragment-based lead discovery and further lead development. Comparison of hits identified in the two studies highlights a key role for both the conditions under which fragment binding is measured and the criteria selected to classify hits.
FEBS Letters | 2010
Jerome Wielens; Stephen J. Headey; Dharshini Jeevarajah; David I. Rhodes; John Joseph Deadman; David K. Chalmers; Martin J. Scanlon; Michael W. Parker
MINT‐7713125: IN (uniprotkb:P04585) and IN (uniprotkb:P04585) bind (MI:0407) by X‐ray crystallography (MI:0114)
FEBS Letters | 2004
Stephen J. Headey; David W. Keizer; Shenggen Yao; John C. Wallace; Leon A. Bach; Raymond S. Norton
Insulin‐like growth factors (IGFs) are important mediators of growth and IGF‐binding proteins (IGFBPs) 1–6 regulate IGF actions. As IGFBP C‐terminal domains contribute to high‐affinity IGF binding, we have defined the binding site for the C‐domain of IGFBP‐6 on IGF‐II using NMR. This site lies adjacent to and between the binding sites for the IGFBP N‐domain and IGF‐I receptor (IGFIR), which have previously been found on opposite sides of the IGF molecule. The C‐domain is therefore likely to interfere with IGF binding to the IGFIR, providing a structural basis for the potent inhibitory effects of intact IGFBPs on IGF actions.
ChemMedChem | 2011
Jerome Wielens; Stephen J. Headey; John Joseph Deadman; David I. Rhodes; Michael W. Parker; David K. Chalmers; Martin J. Scanlon
Fragment-based screening has been used to identify a novel ligand binding site on HIV-1 integrase. Crystal structures of fragments bound at this site (shown) have been used to design elaborated second-generation compounds that bind with higher affinity and good ligand efficiency.
Angewandte Chemie | 2015
Luke A. Adams; Pooja Sharma; Biswaranjan Mohanty; Olga V. Ilyichova; Mark D. Mulcair; Martin L. Williams; Ellen C. Gleeson; Makrina Totsika; Bradley C. Doak; Sofia Caria; Kieran Rimmer; James Horne; Stephen R. Shouldice; Mansha Vazirani; Stephen J. Headey; Brent R. Plumb; Jennifer L. Martin; Begoña Heras; Jamie S. Simpson; Martin J. Scanlon
The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent. Thus DsbA is a critical mediator of virulence and inhibitors may act as antivirulence agents. Biophysical screening has been employed to identify fragments that bind to DsbA from Escherichia coli. Elaboration of one of these fragments produced compounds that inhibit DsbA activity in vitro. In cell-based assays, the compounds inhibit bacterial motility, but have no effect on growth in liquid culture, which is consistent with selective inhibition of DsbA. Crystal structures of inhibitors bound to DsbA indicate that they bind adjacent to the active site. Together, the data suggest that DsbA may be amenable to the development of novel antibacterial compounds that act by inhibiting bacterial virulence.
RNA Biology | 2013
Henry Kim; Stephen J. Headey; Yano M K Yoga; Martin J. Scanlon; Myriam Gorospe; Matthew C. J. Wilce; Jacqueline A. Wilce
The RNA-binding protein TIAR is an mRNA-binding protein that acts as a translational repressor, particularly important under conditions of cellular stress. It binds to target mRNA and DNA via its RNA recognition motif (RRM) domains and is involved in both splicing regulation and translational repression via the formation of “stress granules.” TIAR has also been shown to bind ssDNA and play a role in the regulation of transcription. Here we show, using surface plasmon resonance and nuclear magnetic resonance spectroscopy, specific roles of individual TIAR domains for high-affinity binding to RNA and DNA targets. We confirm that RRM2 of TIAR is the major RNA- and DNA-binding domain. However, the strong nanomolar affinity binding to U-rich RNA and T-rich DNA depends on the presence of the six amino acid residues found in the linker region C-terminal to RRM2. On its own, RRM1 shows preferred binding to DNA over RNA. We further characterize the interaction between RRM2 with the C-terminal extension and an AU-rich target RNA sequence using NMR spectroscopy to identify the amino acid residues involved in binding. We demonstrate that TIAR RRM2, together with its C-terminal extension, is the major contributor for the high-affinity (nM) interactions of TIAR with target RNA sequences.
Scientific Reports | 2015
Joel Selkrig; Matthew J. Belousoff; Stephen J. Headey; Eva Heinz; Takuya Shiota; Hsin-Hui Shen; Simone A. Beckham; Rebecca S. Bamert; Minh-Duy Phan; Mark A. Schembri; Matthew C. J. Wilce; Martin J. Scanlon; Richard A. Strugnell; Trevor Lithgow
The biogenesis of membranes from constituent proteins and lipids is a fundamental aspect of cell biology. In the case of proteins assembled into bacterial outer membranes, an overarching question concerns how the energy required for protein insertion and folding is accessed at this remote location of the cell. The translocation and assembly module (TAM) is a nanomachine that functions in outer membrane biogenesis and virulence in diverse bacterial pathogens. Here we demonstrate the interactions through which TamA and TamB subunits dock to bridge the periplasm, and unite the outer membrane aspects to the inner membrane of the bacterial cell. We show that specific functional features in TamA have been conserved through evolution, including residues surrounding the lateral gate and an extensive surface of the POTRA domains. Analysis by nuclear magnetic resonance spectroscopy and small angle X-ray scattering document the characteristic structural features of these POTRA domains and demonstrate rigidity in solution. Quartz crystal microbalance measurements pinpoint which POTRA domain specifically docks the TamB subunit of the nanomachine. We speculate that the POTRA domain of TamA functions as a lever arm in order to drive the activity of the TAM, assembling proteins into bacterial outer membranes.
Journal of Biological Chemistry | 2013
Yanni Ka-Yan Chin; Stephen J. Headey; Biswaranjan Mohanty; Rahul Patil; Paul A. McEwan; James D. Swarbrick; Terrence D. Mulhern; Jonas Emsley; Jamie S. Simpson; Martin J. Scanlon
Background: Collagen-binding integrins bind differentially to different types of collagen. Results: The solution structure of integrin α1I domain in complex with a collagen-mimetic peptide was determined. Conclusion: Integrin α1I domain binds collagen in a distinct orientation compared with α2I, but the signal transduction mechanisms appear to be conserved. Significance: Understanding the collagen binding specificity of integrins might enable their selective modulation in disease. We have determined the structure of the human integrin α1I domain bound to a triple-helical collagen peptide. The structure of the α1I-peptide complex was investigated using data from NMR, small angle x-ray scattering, and size exclusion chromatography that were used to generate and validate a model of the complex using the data-driven docking program, HADDOCK (High Ambiguity Driven Biomolecular Docking). The structure revealed that the α1I domain undergoes a major conformational change upon binding of the collagen peptide. This involves a large movement in the C-terminal helix of the αI domain that has been suggested to be the mechanism by which signals are propagated in the intact integrin receptor. The structure suggests a basis for the different binding selectivity observed for the α1I and α2I domains. Mutational data identify residues that contribute to the conformational change observed. Furthermore, small angle x-ray scattering data suggest that at low collagen peptide concentrations the complex exists in equilibrium between a 1:1 and 2:1 α1I-peptide complex.