Stephen J. Pratt
Howard Hughes Medical Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen J. Pratt.
Nature Genetics | 1998
Alison Brownlie; Adriana Donovan; Stephen J. Pratt; Barry H. Paw; Andrew C. Oates; Carlo Brugnara; Witkowska He; Shigeru Sassa; Leonard I. Zon
Many human anaemias are caused by defects in haemoglobin synthesis. The zebrafish mutant sauternes (sau) has a microcytic, hypochromic anaemia, suggesting that haemoglobin production is perturbed. During embryogenesis, sau mutants have delayed erythroid maturation and abnormal globin gene expression. Using positional cloning techniques, we show that sau encodes the erythroid-specific isoform of δ-aminolevulinate synthase (ALAS2; also known as ALAS-E), the enzyme required for the first step in haem biosynthesis. As mutations in ALAS2 cause congenital sideroblastic anaemia (CSA) in humans, sau represents the first animal model of this disease.
Nature Genetics | 2003
Barry H. Paw; Alan J. Davidson; Yi Zhou; Rong Li; Stephen J. Pratt; Charles Lee; Nikolaus S. Trede; Alison Brownlie; Adriana Donovan; Eric C. Liao; James Ziai; Anna Drejer; Wen Guo; Carol H. Kim; Babette Gwynn; Luanne L. Peters; Marina N. Chernova; Seth L. Alper; A. Zapata; Sunitha N. Wickramasinghe; Matthew J. Lee; Samuel E. Lux; Andreas Fritz; John H. Postlethwait; Leonard I. Zon
Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia. Erythroblasts from ret fish show binuclearity and undergo apoptosis due to a failure in the completion of chromosome segregation and cytokinesis. Through positional cloning, we show that the ret mutation is in a gene (slc4a1) encoding the anion exchanger 1 (also called band 3 and AE1), an erythroid-specific cytoskeletal protein. We further show an association between deficiency in Slc4a1 and mitotic defects in the mouse. Rescue experiments in ret zebrafish embryos expressing transgenic slc4a1 with a variety of mutations show that the requirement for band 3 in normal erythroid mitosis is mediated through its protein 4.1R–binding domains. Our report establishes an evolutionarily conserved role for band 3 in erythroid-specific cell division and illustrates the concept of cell-specific adaptation for mitosis.
Developmental Dynamics | 1999
Andrew C. Oates; Patrik Wollberg; Stephen J. Pratt; Barry H. Paw; Stephen L. Johnson; Robert K. Ho; John H. Postlethwait; Leonard I. Zon; Andrew F. Wilks
Transcription factors of the STAT family are required for cellular responses to multiple signaling molecules. After ligand binding‐induced activation of cognate receptors, STAT proteins are phosphorylated, hetero‐ or homodimerize, and translocate to the nucleus. Subsequent STAT binding to specific DNA elements in the promoters of signal‐responsive genes alters the transcriptional activity of these loci. STAT function has been implicated in the transduction of signals for growth, reproduction, viral defense, and immune regulation. We have isolated and characterized two STAT homologs from the zebrafish Danio rerio. The stat3 gene is expressed in a tissue‐restricted manner during embryogenesis, and larval development with highest levels of transcript are detected in the anterior hypoblast, eyes, cranial sensory ganglia, gut, pharyngeal arches, cranial motor nuclei, and lateral line system. In contrast, the stat1 gene is not expressed during early development. The stat3 gene maps to a chromosomal position syntenic with the mouse and human STAT3 homologs, whereas the stat1 gene does not. Despite a higher rate of evolutionary change in stat1 relative to stat3, the stat1 protein rescues interferon‐signaling functions in a STAT1‐deficient human cell line, indicating that cytokine‐signaling mechanisms are likely to be conserved between fish and tetrapods. Dev Dyn 1999;215:352–370.
Developmental Genetics | 1998
Kyu-Ho Lee; Jennifer J. Marden; Margaret S. Thompson; Heather MacLennan; Yasuyuki Kishimoto; Stephen J. Pratt; Stefan Schulte-Merker; Mattias Hammerschmidt; Steven L. Johnson; John H. Postlethwaite; David C. Beier; Leonard I. Zon
The BMP family of polypeptide growth factors has been shown to play diverse roles in establishing embryonic patterning and tissue fates. We report the cloning of the zebrafish homologue of BMP-2, examine its expression during embryogenesis, and find that it is localized to the distal end of the long arm of zebrafish chromosome 20. A missense mutation of the bmp2 gene has recently been shown to be responsible for the early dorsalized phenotype of the zebrafish swirl mutant [Kishimoto et al., 1997]. Given the dynamic expression of bmp2 in the developing embryo and the complex interactions of BMP signaling response in vertebrates, it is possible that other mutant phenotypes, due to altered bmp2 gene expression, will eventually map to or interact with this genetic locus.
Proceedings of the National Academy of Sciences of the United States of America | 1995
H. W. Detrich; Mark W. Kieran; Fung Yee Chan; L M Barone; K Yee; J A Rundstadler; Stephen J. Pratt; David G. Ransom; Leonard I. Zon
Developmental Biology | 1998
Margaret A. Thompson; David G. Ransom; Stephen J. Pratt; Heather MacLennan; Mark W. Kieran; H. William Detrich; Brenda Vail; Tara L. Huber; Barry H. Paw; Alison Brownlie; Andrew C. Oates; Andreas Fritz; Michael A. Gates; Angel Amores; Nathan Bahary; William S. Talbot; Helen Her; David R. Beier; John H. Postlethwait; Leonard I. Zon
Genes & Development | 1998
Eric C. Liao; Barry H. Paw; Andrew C. Oates; Stephen J. Pratt; John H. Postlethwait; Leonard I. Zon
Blood | 2002
Adriana Donovan; Alison Brownlie; Michael O. Dorschner; Yi Zhou; Stephen J. Pratt; Barry H. Paw; Ruth B. Phillips; Christine Thisse; Bernard Thisse; Leonard I. Zon
Blood | 2001
Andrew C. Oates; Stephen J. Pratt; Brenda Vail; Yi-Lin Yan; Robert K. Ho; Stephen L. Johnson; John H. Postlethwait; Leonard I. Zon
Blood | 1999
Andrew C. Oates; Alison Brownlie; Stephen J. Pratt; Danielle V. Irvine; Eric C. Liao; Barry H. Paw; Kristen J. Dorian; Stephen L. Johnson; John H. Postlethwait; Leonard I. Zon; Andrew F. Wilks