Stephen J. Tomanicek
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen J. Tomanicek.
Science | 2013
Jerry M. Parks; Alexander Johs; Mircea Podar; Romain Bridou; Richard A. Hurt; Steven D. Smith; Stephen J. Tomanicek; Yun Qian; Steven D. Brown; Craig C. Brandt; Anthony V. Palumbo; Jeremy C. Smith; Judy D. Wall; Dwayne A. Elias; Liyuan Liang
Mercury Methylating Microbes Mercury (Hg) most commonly becomes bioavailable and enters the food web as the organic form methylmercury, where it induces acute toxicity effects that can be magnified up the food chain. But most natural and anthropogenic Hg exists as inorganic Hg2+ and is only transformed into methylmercury by anaerobic microorganisms—typically sulfur-reducing bacteria. Using comparative genomics, Parks et al. (p. 1332, published online 7 February; see the Perspective by Poulain and Barkay) identified two genes that encode a corrinoid and iron-sulfur proteins in six known Hg-methylating bacteria but were absent in nonmethylating bacteria. In two distantly related model Hg-methylating bacteria, deletion of either gene—or both genes simultaneously—reduced the ability for the bacteria to produce methylmercury but did not impair cellular growth. The presence of this two-gene cluster in several other bacterial and lineages for which genome sequences are available suggests the ability to produce methylmercury may be more broadly distributed in the microbial world than previously recognized. A two-gene cluster encodes proteins required for the production of the neurotoxin methylmercury in bacteria. [Also see Perspective by Poulain and Barkay] Methylmercury is a potent neurotoxin produced in natural environments from inorganic mercury by anaerobic bacteria. However, until now the genes and proteins involved have remained unidentified. Here, we report a two-gene cluster, hgcA and hgcB, required for mercury methylation by Desulfovibrio desulfuricans ND132 and Geobacter sulfurreducens PCA. In either bacterium, deletion of hgcA, hgcB, or both genes abolishes mercury methylation. The genes encode a putative corrinoid protein, HgcA, and a 2[4Fe-4S] ferredoxin, HgcB, consistent with roles as a methyl carrier and an electron donor required for corrinoid cofactor reduction, respectively. Among bacteria and archaea with sequenced genomes, gene orthologs are present in confirmed methylators but absent in nonmethylators, suggesting a common mercury methylation pathway in all methylating bacteria and archaea sequenced to date.
Journal of the American Chemical Society | 2008
Leighton Coates; Han-Fang Tuan; Stephen J. Tomanicek; Andrey Kovalevsky; Marat Mustyakimov; Peter T. Erskine; J. B. Cooper
Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of 1 A cannot directly visualize them. Neutron diffraction, however, can locate deuterium atoms even at resolutions around 2 A. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in a newly developed joint refinement software package to visualize deuterium atoms within the active site of the enzyme when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the protonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates.
FEBS Letters | 2014
Marcus J. Edwards; Nanakow Baiden; Alexander Johs; Stephen J. Tomanicek; Liyuan Liang; Liang Shi; Jim K. Fredrickson; John M. Zachara; Andrew J. Gates; Julea N. Butt; David J. Richardson; Thomas A. Clarke
The X‐ray crystal structure of Shewanella oneidensis OmcA, an extracellular decaheme cytochrome involved in mineral reduction, was solved to a resolution of 2.7 Å. The four OmcA molecules in the asymmetric unit are arranged so the minimum distance between heme 5 on adjacent OmcA monomers is 9 Å, indicative of a transient OmcA dimer capable of intermolecular electron transfer. A previously identified hematite binding motif was identified near heme 10, forming a hydroxylated surface that would bring a heme 10 electron egress site to ∼10 Å of a mineral surface.
FEBS Letters | 2011
Stephen J. Tomanicek; Kathy K. Wang; Kevin L. Weiss; Matthew P. Blakeley; Jonathan A. Cooper; Yu Chen; Leighton Coates
Room temperature neutron diffraction data of the fully perdeuterated Toho‐1 R274N/R276N double mutant β‐lactamase in the apo form were used to visualize deuterium atoms within the active site of the enzyme. This perdeuterated neutron structure of the Toho‐1 R274N/R276N reveals the clearest picture yet of the ground‐state active site protonation states and the complete hydrogen‐bonding network in a β‐lactamase enzyme. The ground‐state active site protonation states detailed in this neutron diffraction study are consistent with previous high‐resolution X‐ray studies that support the role of Glu166 as the general base during the acylation reaction in the class A β‐lactamase reaction pathway.
Journal of Molecular Biology | 2010
Stephen J. Tomanicek; Matthew P. Blakeley; Jonathan A. Cooper; Yu Chen; Pavel V. Afonine; Leighton Coates
beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis.
Journal of Biological Chemistry | 2013
Stephen J. Tomanicek; Robert F. Standaert; Kevin L. Weiss; Andreas Ostermann; Tobias E. Schrader; Joseph D. Ng; Leighton Coates
Background: Antibiotic resistance from extended-spectrum β-lactamases (ESBLs) makes infections more dangerous and difficult to treat. Results: Neutron and x-ray crystal structures were determined for an ESBL in complex with an acylation transition state analog. Conclusion: Glu-166 is implicated as the general base in the acylation reaction. Significance: Understanding the catalytic mechanism of β-lactamases will lead to improved antibiotics and β-lactamase inhibitors. The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with 11B, as 10B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
Journal of Applied Crystallography | 2014
Leighton Coates; Stephen J. Tomanicek; Tobias E. Schrader; Kevin L. Weiss; Joseph D. Ng; Philipp Jüttner; Andreas Ostermann
The use of cryocooling in neutron diffraction has been hampered by several technical challenges, such as the need for specialized equipment and techniques. This article reports the recent development and deployment of equipment and strategies that allow routine neutron data collection on cryocooled crystals using off-the-shelf components. This system has several advantages compared to a closed displex cooling system, such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at the FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure, a full neutron data set was collected on the BIODIFF instrument on a Toho-1 β-lactamase structure at 100 K.
Journal of Medicinal Chemistry | 2016
Venu Gopal Vandavasi; Kevin L. Weiss; Jonathan B. Cooper; Peter T. Erskine; Stephen J. Tomanicek; Andreas Ostermann; Tobias E. Schrader; Stephan L. Ginell; Leighton Coates
The catalytic mechanism of class A β-lactamases is often debated due in part to the large number of amino acids that interact with bound β-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type β-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 β-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Marc-Michael Blum; Stephen J. Tomanicek; Harald John; B. Leif Hanson; Heinz Rüterjans; Benno P. Schoenborn; Paul Langan; Julian C.-H. Chen
The signal-to-noise ratio is one of the limiting factors in neutron macromolecular crystallography. Protein perdeuteration, which replaces all H atoms with deuterium, is a method of improving the signal-to-noise ratio of neutron crystallography experiments by reducing the incoherent scattering of the hydrogen isotope. Detailed analyses of perdeuterated and hydrogenated structures are necessary in order to evaluate the utility of perdeuterated crystals for neutron diffraction studies. The room-temperature X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase) is reported at 2.1 A resolution. Comparison with an independently refined hydrogenated room-temperature structure of DFPase revealed no major systematic differences, although the crystals of perdeuterated DFPase did not diffract neutrons. The lack of diffraction is examined with respect to data-collection and crystallographic parameters. The diffraction characteristics of successful neutron structure determinations are presented as a guideline for future neutron diffraction studies of macromolecules. X-ray diffraction to beyond 2.0 A resolution appears to be a strong predictor of successful neutron structures.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2012
Stephen J. Tomanicek; Alexander Johs; Mankaran S Sawhney; Li Shi; Liyuan Liang
The outer membrane cytochrome OmcA functions as a terminal metal reductase in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The ten-heme centers shuttle electrons from the transmembrane donor complex to extracellular electron acceptors. Here, the crystallization and preliminary crystallographic analysis of OmcA are reported. Crystals of OmcA were grown by the sitting-drop vapor-diffusion method using PEG 20,000 as a precipitant. The OmcA crystals belonged to space group P2(1), with unit-cell parameters a = 93.0, b = 246.0, c = 136.6 Å, α = 90, β = 97.8, γ = 90°. X-ray diffraction data were collected to a maximum resolution of 3.25 Å.