Stephen J. White
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen J. White.
Cardiovascular Research | 2010
Helen Williams; Jason L. Johnson; Christopher L. Jackson; Stephen J. White; Sarah J. George
Aims Vascular smooth muscle cell (VSMC) apoptosis can lead to thinning of the fibrous cap and plaque instability. We previously showed that cell–cell contacts mediated by N-cadherin reduce VSMC apoptosis. This study aimed to determine whether matrix-degrading metalloproteinase (MMP)-dependent N-cadherin cleavage causes VSMC apoptosis. Methods and results Induction of human VSMC apoptosis using different approaches, including 200 ng/mL Fas ligand (Fas-L) and culture in suspension, caused N-cadherin cleavage and resulted in the appearance of a C-terminal fragment of N-cadherin (∼35 kDa). Appearance of this fragment during apoptosis was inhibited by 47% with the broad-spectrum MMP inhibitor BB-94. We observed retarded cleavage of N-cadherin after treatment with Fas-L in aortic mouse VSMCs lacking MMP-7. Furthermore, VSMC apoptosis, measured by quantification of cleaved caspase-3, was 43% lower in MMP-7 knockout mouse VSMCs compared with wild-type VSMCs following treatment with Fas-L. Addition of recombinant active MMP-7 increased the amount of N-cadherin fragment by 82% and augmented apoptosis by 53%. The involvement of MMP-7 was corroborated using human cells, where a MMP-7 selective inhibitor reduced the amount of fragment formed by 51%. Importantly, we observed that treatment with Fas-L increased levels of active MMP-7 by 80%. Finally, we observed significantly increased cleavage of N-cadherin, MMP-7 activity, and apoptosis in human atherosclerotic plaques compared with control arteries, and a significant reduction in apoptosis in atherosclerotic plaques from MMP-7 knockout mice. Conclusion This study demonstrates that MMP-7 is involved in the cleavage of N-cadherin and modulates VSMC apoptosis, and may therefore contribute to plaque development and rupture.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Karina Di Gregoli; Nicholas P. Jenkins; Rebecca Salter; Stephen J. White; Andrew C. Newby; Jason L. Johnson
Objective— Our recent studies have highlighted membrane type-1 matrix metalloproteinase (MMP)-14 as a selective marker for an invasive subset of macrophages potentially related to atherosclerotic plaque progression. Moreover, colony stimulating factors (CSF) may exert divergent effects on macrophage MMP expression, possibly through microRNAs. We, therefore, aim to identify and test the pathophysiological role of microRNAs, which modulate macrophage MMP-14 expression in atherosclerotic plaque progression. Approach and Results— Compared with macrophage CSF–differentiated macrophages, granulocyte/macrophage CSF–matured macrophages exhibited reduced MMP-14 mRNA levels but increased protein expression and activity, which resulted in heightened macrophage invasion. MicroRNA-24, identified to target MMP-14, was accordingly increased in macrophage CSF compared with granulocyte/macrophage CSF macrophages. Silencing microRNA-24 in macrophage CSF macrophages significantly increased MMP-14 expression and enhanced their invasive capacity, mimicking granulocyte/macrophage CSF macrophages, and suggesting that granulocyte/macrophage CSF modulates MMP-14 protein expression and subsequent macrophage invasion in a microRNA-24–dependent manner. In human coronary atherosclerotic plaques, increased MMP-14 protein expression in foam cell macrophages was associated with lesions exhibiting histological characteristics associated with an unstable phenotype. Furthermore, microRNA-24 expression in these atherosclerotic plaques was inversely related to MMP-14 protein expression. Moreover, stable plaques contained higher microRNA-24 levels than unstable plaques, and microRNA-24 colocalized with foam cell macrophages that exhibited low MMP-14 protein expression. Finally, in atherosclerotic mice (apolipoprotein E-deficient), microRNA-24 inhibition increased plaque size and macrophage MMP-14 expression. Conclusions— Taken together, our data demonstrates that downregulation of microRNA-24 promotes an invasive macrophage subset and plays a novel regulatory role in MMP-14 proteolytic activity and, therefore, plaque stability, highlighting its therapeutic potential.
Journal of Cellular Physiology | 2011
Stephen J. White; Elaine M Hayes; Stephanie Lehoux; Jamie Y. Jeremy; Anton J.G. Horrevoets; Andrew C. Newby
Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm2) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15‐normal) or 75 dynes/cm2 (LSS75‐elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1‐G, ‐M, ‐X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin‐1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study. J. Cell. Physiol. 226: 2841–2848, 2011.
Cardiovascular Pathology | 2011
Stephen J. White; Graciela B. Sala-Newby; Andrew C. Newby
Aims The oxidized low-density lipoprotein receptor LOX-1 is up-regulated on activated endothelial cells, for example, the endothelium of atherosclerosis-prone sites, in both human and animal models. We examined whether endothelial LOX-1 overexpression may contribute to atherogenesis. Methods Adenoviral vectors expressing LOX-1 or LOXIN (a splice variant of LOX-1 with inhibitory function) were created and used to transduce the normally lesion-free common carotid artery, in high fat-fed female ApoE−/− mice. Mice were placed on high-fat diet for 4 weeks prior to gene transfer with either LOX-1 or a combination of LOX-1 and LOXIN, and assessment of plaque development analyzed 6 weeks following gene transfer. Results Compared to controls, LOX-1 transduction induced a significant increase in plaque coverage within the common carotid artery to 91% compared to 50% after RAd66 control virus infection (P≤.05). This was inhibited by co-expression of LOXIN (62%). Conclusions These results demonstrate that up-regulation of LOX-1 promotes atherogenesis, highlighting LOX-1 function as a target for intervention. In addition, this study further demonstrated the inhibitory function of LOXIN.
Circulation Research | 2017
Karina Di Gregoli; Nur Najmi Mohamad Anuar; Rosaria Bianco; Stephen J. White; Andrew C. Newby; Sarah J. George; Jason L. Johnson
Rationale: Atherosclerosis and aneurysms are leading causes of mortality worldwide. MicroRNAs (miRs) are key determinants of gene and protein expression, and atypical miR expression has been associated with many cardiovascular diseases; although their contributory role to atherosclerotic plaque and abdominal aortic aneurysm stability are poorly understood. Objective: To investigate whether miR-181b regulates tissue inhibitor of metalloproteinase-3 expression and affects atherosclerosis and aneurysms. Methods and Results: Here, we demonstrate that miR-181b was overexpressed in symptomatic human atherosclerotic plaques and abdominal aortic aneurysms and correlated with decreased expression of predicted miR-181b targets, tissue inhibitor of metalloproteinase-3, and elastin. Using the well-characterized mouse atherosclerosis models of Apoe−/− and Ldlr−/−, we observed that in vivo administration of locked nucleic acid anti-miR-181b retarded both the development and the progression of atherosclerotic plaques. Systemic delivery of anti-miR-181b in angiotensin II–infused Apoe−/− and Ldlr−/− mice attenuated aneurysm formation and progression within the ascending, thoracic, and abdominal aorta. Moreover, miR-181b inhibition greatly increased elastin and collagen expression, promoting a fibrotic response and subsequent stabilization of existing plaques and aneurysms. We determined that miR-181b negatively regulates macrophage tissue inhibitor of metalloproteinase-3 expression and vascular smooth muscle cell elastin production, both important factors in maintaining atherosclerotic plaque and aneurysm stability. Validation studies in Timp3−/− mice confirmed that the beneficial effects afforded by miR-181b inhibition are largely tissue inhibitor of metalloproteinase-3 dependent, while also revealing an additional protective effect through elevating elastin synthesis. Conclusions: Our findings suggest that the management of miR-181b and its target genes provides therapeutic potential for limiting the progression of atherosclerosis and aneurysms and protecting them from rupture.
Thrombosis and Haemostasis | 2016
Stephen J. White; Andrew C. Newby; Thomas W. Johnson
Myocardial infarction is a prevalent, life-threatening consequence of athero-thrombosis. Post-mortem histology and intravascular imaging in live patients have shown that approximately one third of myocardial infarctions are caused by a thrombus overlying an intact, non-ruptured atherosclerotic plaque. Histology identifies erosion of luminal endothelial cells from smooth muscle and proteoglycan-rich, thick fibrous cap atheromas as the underlying pathology. Unlike plaque ruptures, endothelial erosions tend to occur on thick-capped atherosclerotic plaques and may or may not be associated with inflammation. Smoking and female gender are strong risk factors for erosion. Multiple mechanisms may contribute to endothelial erosion, including endothelial dysfunction, TLR signalling, leukocyte activation and modification of sub-endothelial matrix by endothelial or smooth muscle cells, which may trigger loss of adhesion to the extracellular matrix or endothelial apoptosis. Diagnosis of endothelial erosion by intravascular imaging, especially high resolution optical coherence tomography, may influence treatment strategies, offering prognostic value and utility as an endpoint in trials of agents designed to preserve an intact coronary endothelium.
Drug and Alcohol Dependence | 2016
Jack E. Teasdale; Andrew C. Newby; Nicholas J. Timpson; Marcus R. Munafò; Stephen J. White
Highlights • Human coronary artery endothelial cells show a biological response to cigarette smoke.• This response was not seen following exposure to e-cigarette aerosol.• Using e-cigarettes instead of cigarettes may reduce immediate cardiovascular harms.
Journal of Molecular and Cellular Cardiology | 2016
Tomomi E. Kimura; Aparna Duggirala; Madeleine Claire Smith; Stephen J. White; Graciela B. Sala-Newby; Andrew C. Newby; Mark Bond
Aims Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Methods and results Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Conclusion Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ–TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention.
Journal of Cardiac Surgery | 2002
Stephen J. White; Andrew C. Newby
Abstract Gene therapy could improve human saphenous vein (HSV) coronary vein‐graft patency by reducing early thrombosis, neointimal hyperplasia and atherosclerosis. Mouse and rabbit models use veins with much thinner walls than pig or HSVs but atherosclerosis can be more easily induced; none of these models shows early thrombosis. Prostacyclin synthase, tissue factor pathway inhibitor, and tissue plasminogen activator might decrease thrombus formation. Tissue inhibitors of metalloproteinases (TIMPs) reduce intimal migration of smooth muscle cells, while TIMP‐3 and the p53 tumor suppressor protein promote apoptosis. Prostacyclin synthase and nitric oxide synthase, and cell cycle inhibitors, such as E2F decoy oligonucleotides (D‐E2F), reduce neointima formation. This might be enough by itself to decrease later atherosclerosis. Alternatively, direct targeting with nitric oxide synthase, decoy adhesion molecules, or interleukin‐10 might be possible.
Biomedical Optics Express | 2014
Muthukaruppan Gnanadesigan; Gijs van Soest; Stephen J. White; Simon Scoltock; Giovanni J. Ughi; Andreas Baumbach; Antonius F.W. van der Steen; Evelyn Regar; Thomas W. Johnson
Atherosclerotic plaque composition can be imaged using the optical attenuation coefficient derived from intravascular optical coherence tomography (OCT) data. The relation between optical properties and tissue type has been established on autopsy tissues. In this study, we validate an ex-vivo model for the effect of temperature and tissue fixation on optical parameters. We studied the optical attenuation of human coronary arteries at three temperatures, before and after formalin fixation. We developed an en-face longitudinal display of attenuation data of the OCT pullbacks. Using the unfixed, body-temperature condition image as a standard, and after extensive registration with other condition images, we quantify the differences in optical attenuation and the backscattered intensity. The results suggest that tissue fixation and temperature do not introduce systematic errors in studies of arterial optical properties.