Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen J. Winters is active.

Publication


Featured researches published by Stephen J. Winters.


Gene | 2003

Identification of distinct gene expression profiles associated with treatment of LβT2 cells with gonadotropin-releasing hormone agonist using microarray analysis

Sham S. Kakar; Stephen J. Winters; Wolfgang Zacharias; Donald M. Miller; Shawn Flynn

Gonadotropin-releasing hormone (GnRH) is a neuropeptide that plays a pivotal role in reproductive processes. In recent years, it has become clear that it is also an anti-proliferative agent. GnRH analogs are now used clinically in the treatment of prostate cancer as well as endometriosis and precocious puberty. The target cells of GnRH include the gonadotropes of the anterior pituitary gland and the cells of various hormone-dependent tumors. Only a few target genes have been identified in these cells, however, and little is known concerning their regulation by GnRH. Therefore, we used a quantitative microarray assay to identify the genes that are regulated by GnRH in a murine gonadotrope tumor cell line (LbetaT2). Treatment of LbetaT2 cells with GnRH agonist des-gly(10),[D-Ala(6)]GnRH (GnRHA) for 1 h resulted in alterations in the levels of expression of genes that ranged in magnitude from 1.3- to 159-fold, with a total of 232 genes exhibiting a twofold or greater alteration in expression compared to vehicle treated cells. Of these 232 genes, 149 were up-regulated and, surprisingly, 83 were down-regulated by GnRHA treatment. After 24 h of treatment, the expression of most of the genes that had exhibited altered expression after 1 h of treatment had returned to baseline levels. Moreover, a different profile was observed after 24 h of treatment with 208 genes exhibiting a twofold or greater alteration. Of these, 95 were up-regulated and 113 down-regulated. Most of the affected genes were not known to be responsive to GnRH prior to this study. Treatment with GnRHA was found to affect the expression of a diverse range of genes, including oncogenes and those that encode transcription factors, ion channel proteins, and cytoskeletal proteins as well as other proteins that are involved in signal transduction, the cell cycle, cell proliferation and apoptosis. The altered expression of six of the genes that were found by microarray analysis to be regulated by GnRHA was confirmed by semiquantitative reverse transcriptase-polymerase chain reaction. This is first application of the microarray technique in the study of the global profile of genes regulated by GnRH, and should prove to be a powerful tool for future analysis of the mechanisms by which GnRH regulates the expression of gonadotropins and the growth of tumor cells.


Archives of Biochemistry and Biophysics | 2003

Glucocorticoids inhibit interconversion of 7-hydroxy and 7-oxo metabolites of dehydroepiandrosterone: a role for 11β-hydroxysteroid dehydrogenases?

Boaz Robinzon; Kristy K Michael; Sharon L. Ripp; Stephen J. Winters; Russell A. Prough

The cytochrome p450-dependent formation and subsequent interconversion of dehydroepiandrosterone (DHEA) metabolites 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA was observed in human, pig, and rat liver microsomal fractions. Rat liver mitochondria and nuclei also converted DHEA to 7 alpha-OH-DHEA and 7-oxo-DHEA, but at a lower rate. With NADP(+), and less so with NAD(+), rat, pig, and human liver microsomes and rat liver mitochondria and nuclei converted 7 alpha-OH-DHEA to 7-oxo-DHEA. This reaction was inhibited by corticosterone and the 11 beta-hydroxysteroid dehydrogenase (11 betaHSD) inhibitor carbenoxolone (CBX). The conversion of 7 alpha-OH-DHEA to 7-oxo-DHEA by rat kidney occurred at higher rates with NAD(+) than with NADP(+) and was inhibited by corticosterone. With NADPH, 7-oxo-DHEA was converted to unidentified hydroxylated metabolites and low levels of 7 alpha-OH-DHEA by rat liver microsomes. In contrast, pig liver microsomal fractions reduced 7-oxo-DHEA to nearly equal amounts of 7 alpha- and 7 beta-OH-DHEA, while human fractions produced mainly 7 beta-OH-DHEA. Dehydrocorticosterone inhibited the reduction to both isomers by pig liver microsomes, but only to 7 alpha-OH-DHEA by human microsomes; CBX inhibited both reactions. Rat kidney did not reduce 7-oxo-DHEA with either NADPH or NADH. These results demonstrate that DHEA is first converted in liver to 7 alpha-OH-DHEA, which is subsequently oxidized to 7-oxo-DHEA in both liver and kidney. In liver, interconversion of 7-oxo-DHEA and 7-OH-DHEA isomers is largely catalyzed by 11 betaHSD1, while in kidney 11 betaHSD2 (NAD(+)-dependent) and 11 betaHSD3 (NADP(+)-dependent) likely catalyze the unidirectional oxidation of 7 alpha-hydroxy-DHEA to 7-oxo-DHEA. Distinct species-specific routes of metabolism of DHEA and the interconversion of its metabolites obviate extrapolation of animal studies to humans.


Metabolism-clinical and Experimental | 2009

Influence of obesity on vitamin D–binding protein and 25-hydroxy vitamin D levels in African American and white women

Stephen J. Winters; Ramana Chennubhatla; Chenxi Wang; James J. Miller

25-Hydroxy vitamin D (25OHD) is lipophilic and highly bound to vitamin D-binding protein (VDBP) in plasma. In the present study, we examined VDBP and 25OHD levels by race and body mass index (BMI) in young adult women to determine whether circulating VDBP plays a role in the low levels of 25OHD with obesity and among African Americans. In agreement with previous studies, mean 25OHD levels were lower in African American women than in whites (P < .01). In a hierarchical multiple regression model, BMI was associated with 25OHD after adjustment for age in white women (P = .02, R(2) = .10) but not in African American women. The VDBP levels, by contrast, were similar in African Americans and whites, and were unrelated to BMI in either racial group. Furthermore, VDBP was unrelated to the plasma level of 25OHD. These data confirm an interaction between race and obesity in vitamin D metabolism, and imply that the carrier protein is not an important determinant of circulating 25OHD in women, nor is it affected by race or adiposity.


Molecular and Cellular Endocrinology | 2002

Evidence that PACAP and GnRH down-regulate follicle-stimulating hormone-β mRNA levels by stimulating follistatin gene expression: effects on folliculostellate cells, gonadotrophs and LβT2 gonadotroph cells

Yasuhisa Fujii; Yohei Okada; Joseph P. Moore; Alan C. Dalkin; Stephen J. Winters

Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates alpha-subunit transcription and lengthens LH-beta mRNA transcripts, but reduces FSH-beta mRNA levels in rat pituitary cell cultures. PACAP also stimulates follistatin transcription, an effect which may explain the decrease in FSH-beta mRNA. To begin to investigate the cells in which PACAP activates the follistatin gene, quantitative in situ hybridization for follistatin mRNA combined with immunostaining for LHbeta and S100 protein was performed. In control cultures, follistatin mRNA was expressed in 70% of gonadotrophs and in 47% of folliculostellate cells (S-100+). PACAP increased (P<0.001) both the number of follistatin-expressing cells as well as the number of grains per cell in both gonadotrophs and folliculostellate cells, while GnRH only affected (P=0.01) gonadotrophs. Follistatin and FSH-beta gene expression in rat pituitary cultures were also measured by competitive quantitative RT-PCR and northern analysis, respectively. Both PACAP and GnRH increased (P<0.05) follistatin gene expression and suppressed (P<0.05) FSH-beta mRNA, and the effect of PACAP together with GnRH on follistatin exceeded that of GnRH alone. PACAP regulation of follistatin and FSH-beta gene expression was studied further in LbetaT2 cells that were found to express receptors for the specific PACAP receptor, PAC(1). Follistatin mRNA was undetectable in cultures exposed to control media, or stimulated with PACAP, GnRH or rh-activin-A. In contrast to the results in primary pituitary cultures, PACAP increased FSH-beta mRNA in these follistatin-deficient cells. Moreover, using transient transfection, PACAP stimulated transcription of ovine-FSH-beta-luciferase. GnRH likewise increased FSH-beta mRNA and stimulated FSH-beta gene transcription in LbetaT2 cells. Activin-A increased FSH-beta gene expression dose-dependently, and activin induction of FSH-beta mRNA was blocked completely by 3-fold excess follistatin. These results indicate that PACAP stimulates follistatin gene expression in both gonadotrophs and folliculostellate cells, and provide further evidence that follistatin is required for PACAP or continuous GnRH to down-regulate FSH-beta mRNA. These experiments suggest a mechanism by which PACAP influences FSH production selectively by an autocrine effect on gonadotrophs and by a paracrine mechanism through folliculostellate cells that involves follistatin.


Fertility and Sterility | 2010

Adipose tissue and reproduction in women

Henry Bohler; Sri Prakash Mokshagundam; Stephen J. Winters

Adipose tissue has been viewed as the primary source of stored energy, but with the discovery of novel adipose tissue gene products, i.e., adipokines, another equally important role has emerged. Adipose tissue is a key endocrine organ involved in multiple processes, including glucose homeostasis, steroid production, immunoregulation, hematopoesis, and reproduction. The distribution of adipose tissue may also have a significant impact on reproductive function.


Biology of Reproduction | 2003

Evidence that Gonadotropin-Releasing Hormone (GnRH) II Stimulates Luteinizing Hormone and Follicle-Stimulating Hormone Secretion from Monkey Pituitary Cultures by Activating the GnRH I Receptor

Yohei Okada; Akiko Murota-Kawano; Sham S. Kakar; Stephen J. Winters

Abstract Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion.


Molecular and Cellular Endocrinology | 2007

Transcriptional regulation of follistatin expression by GnRH in mouse gonadotroph cell lines: Evidence for a role for cAMP signaling

Stephen J. Winters; Dushan T. Ghooray; Yasuhisa Fujii; Joseph P. Moore; Jennifer R. Nevitt; Sham S. Kakar

GnRH applied continuously or in pulses of high frequency increases follistatin, and thereby differentially regulates FSH and LH. This study was conducted in alphaT3-1 and LbetaT2 gonadotroph cells to begin to understand the signaling pathways through which GnRH stimulates follistatin synthesis. GnRH increased follistatin expression and stimulated a follistatin-LUC reporter in LbetaT2 cells, but was inactive in alphaT3-1 cells. GnRH also increased cAMP levels and stimulated a cAMP-responsive promoter only in LbetaT2 cells. Forskolin stimulated follistatin in both cell lines. GnRH activation of follistatin was blocked by the PKA inhibitor H89 and by over-expression of a dominant-negative inhibitor of CREB (A-CREB). Activation was also suppressed by PKC depletion, and was reduced by the PKC inhibitor bisindolylmaleimide. The MEK inhibitor PD98059 blocked activation by GnRH or forskolin implying that MAPK contributes to cAMP/PKA-mediated activation of follistatin. When LbetaT2 cells were transfected with follistatin-LUC together with A-CREB, and perifused with GnRH, activation was blocked during continuous GnRH, but stimulation by hourly GnRH pulses was unaffected. These experiments provide evidence that GnRH stimulates follistatin through multiple signaling pathways, and that cAMP-CREB activation is obligatory when GnRH is applied continuously. The finding that follistatin transcription was CREB-dependent with continuous but not pulsatile GnRH implies that the mode of ligand activation of GnRH receptors modifies the transcriptional response by changing the signaling network. These results provide a mechanism linking GnRH pulsatility to the differential control of FSH-beta and LH-beta gene expression through follistatin.


Biology of Reproduction | 2005

Pituitary Adenylate Cyclase Activating Polypeptide Messenger RNA in the Paraventricular Nucleus and Anterior Pituitary During the Rat Estrous Cycle

Joseph P. Moore; Laura L. Burger; Alan C. Dalkin; Stephen J. Winters

Abstract The neuropeptide pituitary adenylate cyclase activating polypeptide (ADCYAP 1, or PACAP) has been demonstrated to enhance gonadotropin-releasing hormone (GnRH)-induced gonadotropin secretion and regulate gonadotropin subunit gene expression in cultures of anterior pituitary cells. In the present study, we used in situ hybridization and real-time polymerase chain reaction to examine the expression of Pacap mRNA within the paraventricular nucleus (PVN) and anterior pituitary throughout the estrous cycle of the rat. Levels of luteinizing hormone in serum and pituitary gonadotropin subunit mRNAs were evaluated and displayed cyclic fluctuations similar to those reported previously. Pacap mRNA expression in the PVN and pituitary varied significantly during the estrous cycle, with the greatest changes occurring on the day of proestrus. Pacap mRNA levels in the PVN declined significantly on the morning of diestrus. During proestrus, PVN Pacap mRNA levels significantly increased 3 h before the gonadotropin surge and then declined. Pituitary expression of Pacap mRNA also varied on the afternoon of proestrus with a moderate decline at the time of the gonadotropin surge and a significant increase later in the evening. Expression of the mRNA species encoding the 288 amino acid form of follistatin increased significantly following the rise in pituitary Pacap mRNA, at the termination of the secondary surge in follicle-stimulating hormone beta (Fshb) gene expression. These results suggest that PACAP is involved in events before and following the gonadotropin surge, perhaps through increased gonadotroph sensitivity to GnRH and suppression of Fshb subunit expression through increased follistatin, as previously observed in vitro.


Biology of Reproduction | 2011

PACAP, an Autocrine/Paracrine Regulator of Gonadotrophs

Stephen J. Winters; Joseph P. Moore

Hypothalamic-hypophysiotropic peptides are the proximate regulators of pituitary cells, but they cannot fully account for the complex functioning of these cells. Accordingly, awareness is growing that an array of peptides produced in the pituitary exert paracrine/autocrine functions. One such peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), was originally identified as a hypothalamic activator of cAMP production in pituitary cells. Gonadotrophs and folliculostellate cells are the main source of pituitary PACAP, and each pituitary cell type expresses a PACAP receptor. PACAP increases alpha-subunit (Cga) and Lhb mRNAs, and it stimulates the transcription of follistatin (Fst) that, in turn, restrains activin signaling to repress Fshb and gonadotropin-releasing hormone-receptor (Gnrhr) expression as well as other activin-responsive genes. The PACAP (Adcyap1) promoter is activated by cAMP, and pituitary cells may communicate by a feed-forward, cAMP-dependent mechanism to maintain a high level of PACAP in the fetal pituitary. At birth, pituitary PACAP declines and pituitary follistatin levels decrease, which together with increased gonadotropin-releasing hormone secretion allow Gnrhr and Fshb to increase and facilitate activation of the newborn gonads. Changes in Adcyap1 expression levels in the adult pituitary may contribute to the selective rise in follicle-stimulating hormone (FSH) from age 20–30 days to the midcycle surge and to the secondary increase in FSH that occurs before estrus. These results provide further support for the notion that PACAP is a key player in reproduction through its actions as a pituitary autocrine/paracrine hormone.


Diabetes Care | 2014

Bilateral Oophorectomy and the Risk of Incident Diabetes in Postmenopausal Women

Duke Appiah; Stephen J. Winters; Carlton A. Hornung

OBJECTIVE Ovarian hormones regulate glucose uptake and insulin sensitivity. Despite the high frequency of surgical menopause, its relationship with diabetes has not been extensively investigated. We assessed the association between hysterectomy with or without bilateral oophorectomy (BSO) status, menopausal age, and reproductive life span with incident diabetes. RESEARCH DESIGN AND METHODS Data were from a cohort of 2,597 postmenopausal women enrolled in the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study without diabetes mellitus at baseline. Cox proportional hazards regression models were used to calculate adjusted hazard ratios (HRs) and 95% CIs. RESULTS After a median follow-up time of 9.2 years, the incidence of diabetes (in cases per 1,000 person-years) was 7.4 for women with no hysterectomy or BSO, 8.2 for hysterectomy alone, and 8.5 for hysterectomy with BSO. Hysterectomy status was associated positively with diabetes (HR 1.66, 95% CI 1.23–2.23). However, the elevated risk was restricted to women with both hysterectomy and BSO after adjustment for relevant confounders (HR 1.57, 95% CI 1.03–2.41). An earlier age at menopause and a shorter reproductive life span also exhibited a linear relationship with the development of diabetes irrespective of type of menopause (P for trend = 0.001). CONCLUSIONS Women with hysterectomy concomitant with BSO may represent a unique population with elevated risk for diabetes and other chronic diseases. Therefore, the decision to remove the ovaries at the time of hysterectomy for benign conditions during the premenopausal years should be balanced with the risk of diabetes and its potential complications. Furthermore, the mechanism linking BSO to diabetes mellitus needs to be clarified.

Collaboration


Dive into the Stephen J. Winters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sham S. Kakar

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuhisa Fujii

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Yohei Okada

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Oshima

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Banu Aydin

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge