Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen K. Chapes is active.

Publication


Featured researches published by Stephen K. Chapes.


Journal of Applied Physiology | 2009

Spaceflight effects on T lymphocyte distribution, function and gene expression

Daila S. Gridley; James M. Slater; Xian Luo-Owen; Asma Rizvi; Stephen K. Chapes; Louis S. Stodieck; Virginia L. Ferguson; Michael J. Pecaut

The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3-6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3(+) T and CD19(+) B cell counts were low in spleens from the FLT group, whereas the number of NK1.1(+) natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-gamma, and macrophage inflammatory protein-1alpha were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment.


Journal of Applied Physiology | 2009

Effects of spaceflight on innate immune function and antioxidant gene expression

Farnaz P. Baqai; Daila S. Gridley; James M. Slater; Xian Luo-Owen; Louis S. Stodieck; Virginia L. Ferguson; Stephen K. Chapes; Michael J. Pecaut

Spaceflight conditions have a significant impact on a number of physiological functions due to psychological stress, radiation, and reduced gravity. To explore the effect of the flight environment on immunity, C57BL/6NTac mice were flown on a 13-day space shuttle mission (STS-118). In response to flight, animals had a reduction in liver, spleen, and thymus masses compared with ground (GRD) controls (P < 0.005). Splenic lymphocyte, monocyte/macrophage, and granulocyte counts were significantly reduced in the flight (FLT) mice (P < 0.05). Although spontaneous blastogenesis of splenocytes in FLT mice was increased, response to lipopolysaccharide (LPS), a B-cell mitogen derived from Escherichia coli, was decreased compared with GRD mice (P < 0.05). Secretion of IL-6 and IL-10, but not TNF-alpha, by LPS-stimulated splenocytes was increased in FLT mice (P < 0.05). Finally, many of the genes responsible for scavenging reactive oxygen species were upregulated after flight. These data indicate that exposure to the spaceflight environment can increase anti-inflammatory mechanisms and change the ex vivo response to LPS, a bacterial product associated with septic shock and a prominent Th1 response.


Infection and Immunity | 2002

Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

Roman R. Ganta; Melinda J. Wilkerson; Chuanmin Cheng; Aaron M. Rokey; Stephen K. Chapes

ABSTRACT Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for ≥30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4+ T cells, are critical for conferring resistance to E. chaffeensis.


Journal of Leukocyte Biology | 1992

Cytokine secretion by immune cells in space

Stephen K. Chapes; Dennis R. Morrison; James A. Guikema; Marian L. Lewis; Brian S. Spooner

Cultured, bone marrow–derived macrophages, murine spleen and lymph node cells, and human lymphocytes were tested for their ability to secrete cytokines in space. Lipopolysaccharide‐activated bone marrow macrophages were found to secrete significantly more interleukin‐1 and tumor necrosis factor when stimulated in space than when stimulated on earth. Murine spleen cells stimulated with poly I:C in space released significantly more interferon‐α at 1 and 14 hours after stimulation than cells stimulated on earth. Similarly, murine lymph node T cells and human peripheral blood lymphocytes, stimulated with concanavalin A in space, secreted significantly more interferon‐γ than ground controls. These data suggest that space flight has a significant enhancing effect on immune cell release of cytokines in vitro.


Journal of Leukocyte Biology | 1991

Porcine alveolar and pulmonary intravascular macrophages: comparison of immune functions.

C.G. Chitko-McKown; Stephen K. Chapes; R.E. Brown; R.M. Phillips; R.D. McKown; Frank Blecha

Although a substantial amount of information is available on pulmonary alveolar macrophages (PAMs), little is known about pulmonary intravascular macrophages (PIMs), a separate population of lung macrophages found apposed to the endothelium of pulmonary capillaries. We compared these two populations of lung immunocytes to determine their relative immunological activity. Our results suggest that PAMs are more phagocytic than PIMs; however, PIMs may be more efficient at lysing ingested bacteria than PAMs. Although similar in antibody‐dependent cellular cytotoxicity, PIMs are more spontaneously cytolytic than PAMs. Depending upon the effector:target cell ratio studied, the tumoricidal activity of PIMs was less than or equal to that of PAMs. Both cell populations produced the cytokines interleukin‐1 and tumor necrosis factor‐α at similar concentrations. These data suggest that PIMs are immunologically active, although the degree of activity may differ between PIMs and PAMs.


Journal of Leukocyte Biology | 1993

Antiorthostatic suspension as a model for the effects of spaceflight on the immune system

Stephen K. Chapes; Andrea M. Mastro; Gerald Sonnenfeld; Wallace D. Berry

We describe the use and appropriateness of antiorthostatic suspension in immunological investigations. This manuscript describes the model and discusses how well data obtained by using the model correlate with spaceflight data. This review concludes with some suggestions for future experiments using antiorthostatic suspension.


Clinical and Vaccine Immunology | 2010

Interactive Changes between Macrophages and Adipocytes

Linglin Xie; M. T. Ortega; Silvia Mora; Stephen K. Chapes

ABSTRACT Obesity is associated with a proinflammatory state, with macrophage infiltration into adipose tissue. We tested the hypothesis that communication between macrophages and adipocytes affects insulin resistance by disrupting insulin-stimulated glucose transport, adipocyte differentiation, and macrophage function. To test this hypothesis, we cocultured 3T3-L1 adipocytes with C2D macrophages or primary peritoneal mouse macrophages and examined the impacts of macrophages and adipocytes on each other. Adipocytes and preadipocytes did not affect C2D macrophage TNF-α, IL-6, or IL-1β transcript concentrations relative to those obtained when C2D macrophages were incubated alone. However, preadipocytes and adipocytes increased PEC-C2D macrophage IL-6 transcript levels, while preadipocytes inhibited IL-1β transcript levels compared to those obtained when PEC-C2D macrophages were incubated in medium alone. We found that adipocyte coculture increased macrophage consumption of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and, in some cases, IL-6. C2D macrophages increasingly downregulated GLUT4 transcript levels in differentiated adipocytes. Recombinant TNF-α, IL-1β, and IL-6 also downregulated GLUT4 transcript levels relative to those for the control. However, only IL-6 was inhibitory at concentrations detected in macrophage-adipocyte cocultures. IL-6 and TNF-α, but not IL-1β, inhibited Akt phosphorylation within 15 min of insulin stimulation, but only IL-6 was inhibitory 30 min after stimulation. Lastly, we found that adipocyte differentiation was inhibited by macrophages or by recombinant TNF-α, IL-6, and IL-1β, with IL-6 having the most impact. These data suggest that the interaction between macrophages and adipocytes is a complex process, and they support the hypothesis that the macrophage-adipocyte interaction affects insulin resistance by disrupting insulin-stimulated glucose transport, adipocyte differentiation, and macrophage function.


Biochimica et Biophysica Acta | 2008

Adiponectin and leptin are secreted through distinct trafficking pathways in adipocytes

Linglin Xie; Cormac P. O'Reilly; Stephen K. Chapes; Silvia Mora

Adiponectin and leptin are two adipokines secreted by white adipose tissue that regulate insulin sensitivity. Previously we reported that adiponectin but not leptin release depends on GGA-coated vesicle formation, suggesting that leptin and adiponectin may follow different secretory routes. Here we have examined the intracellular trafficking pathways that lead to the secretion of these two hormones. While adiponectin and leptin displayed distinct localization in the steady-state, treatment of adipocytes with brefeldin A inhibited both adiponectin and leptin secretion to a similar level, indicating a common requirement for class III ADP-ribosylating factors and an intact Golgi apparatus. Adiponectin secretion was significantly reduced by endosomal inactivation in both 3T3L1 and rat isolated adipocytes, whereas this treatment had no effect on leptin secretion. Importantly, endosomal inactivation completely abolished the insulin stimulatory effect on adiponectin release in rat adipocytes. Confocal microscopy studies revealed colocalization of adiponectin with endogenous rab11 a marker for the recycling endosome, and with expressed rab5-GFP mutant (rab5Q75L) a marker for the early endosome compartment. Colocalization of adiponectin and rab5Q75L was increased in endosome inactivated cells. Consistent with these findings adiponectin secretion was reduced in cells expressing mutants of Rab11 and Rab5 proteins. In contrast, expression of an inactive (kinase dead) mutant of Protein Kinase D1 moderately but significantly inhibited leptin secretion without altering adiponectin secretion. Taken together, these results suggest that leptin and adiponectin secretion involve distinct intracellular compartments and that endosomal compartments are required for adiponectin but not for leptin secretion.


Infection and Immunity | 2003

Toll-Like Receptor 4-Positive Macrophages Protect Mice from Pasteurella pneumotropica-Induced Pneumonia

Marcia L. Hart; Derek A. Mosier; Stephen K. Chapes

ABSTRACT This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4Lps-del mouse strains C57BL10/ScN (B10) and STOCK Abbtm1TLR4Lps-delSlc11a1s(B10 × C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4Lps-del genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 × C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 × C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 × C2D mice, and there was earlier transcription of KC and MIP-1α in B10 × C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 × C2D mice, which lack CD4+ T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.


Infection and Immunity | 2007

Differential Clearance and Immune Responses to Tick Cell-Derived versus Macrophage Culture-Derived Ehrlichia chaffeensis in Mice

Roman R. Ganta; Chuanmin Cheng; Elizabeth C. Miller; Bridget L. McGuire; Lalitha Peddireddi; Kamesh R. Sirigireddy; Stephen K. Chapes

ABSTRACT Human monocytic ehrlichiosis is caused by a tick-transmitted rickettsia, Ehrlichia chaffeensis. We recently reported that E. chaffeensis grown in tick cells expresses different proteins than bacteria grown in macrophages. Therefore, we tested the hypothesis that immune responses against E. chaffeensis would be different if the mice are challenged with bacteria grown in macrophages or tick cells. We assessed the E. chaffeensis clearance from the peritoneum, spleen, and liver by C57BL/6J mice using a TaqMan-based real-time reverse transcription-PCR assay. Macrophage-grown E. chaffeensis was cleared in 2 weeks from the peritoneum, whereas the pathogen from tick cells persisted for nine additional days and included three relapses of increasing bacterial load separated by three-day intervals. Tick cell-grown bacteria also persisted in the livers and spleens with higher bacterial loads compared to macrophage-grown bacteria and fluctuated over a period of 35 days. Three-day periodic cycles were detected in T-cell CD62L/CD44 ratios in the spleen and bone marrow in response to infections with both tick cell- and macrophage-grown bacteria and were accompanied by similar periodic cycles of spleen cell cytokine secretions and nitric oxide and interleukin-6 by peritoneal macrophages. The E. chaffeensis-specific immunoglobulin G response was considerably higher and steadily increased in mice infected with the tick cell-derived E. chaffeensis compared to DH82-grown bacteria. In addition, antigens detected by the immunoglobulins were significantly different between mice infected with the E. chaffeensis originating from tick cells or macrophages. The differences in the immune response to tick cell-grown bacteria compared to macrophage-grown bacteria reflected a delay in the shift of gene expression from the tick cell-specific Omp 14 gene to the macrophage-specific Omp 19 gene. These data suggest that the host response to E. chaffeensis depends on the source of the bacteria and that this experimental model requires the most natural inoculum possible to allow for a realistic understanding of host resistance.

Collaboration


Dive into the Stephen K. Chapes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Blecha

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary A. Anderson

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge