Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen K. Hutchison is active.

Publication


Featured researches published by Stephen K. Hutchison.


PLOS Pathogens | 2009

Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever–Associated Arenavirus from Southern Africa

Thomas Briese; Janusz T. Paweska; Laura K. McMullan; Stephen K. Hutchison; Craig Street; Gustavo Palacios; Marina L. Khristova; Jacqueline Weyer; Robert Swanepoel; Michael Egholm; Stuart T. Nichol; W. Ian Lipkin

Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever–associated arenavirus from the Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a novel, genetically distinct, highly pathogenic arenavirus.


Nature Medicine | 2006

Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing

Roman K. Thomas; Elizabeth Nickerson; Jan Fredrik Simons; Pasi A. Jänne; Torstein Tengs; Yuki Yuza; Levi A. Garraway; Thomas LaFramboise; Jeffrey C. Lee; Kinjal Shah; Keith O'Neill; Hidefumi Sasaki; Neal I. Lindeman; Kwok-Kin Wong; Ana M. Borras; Edward J. Gutmann; Konstantin H. Dragnev; Ralph DeBiasi; Tzu Hsiu Chen; Karen A. Glatt; Heidi Greulich; Brian Desany; Christine Lubeski; William Brockman; Pablo Alvarez; Stephen K. Hutchison; John H. Leamon; Michael T. Ronan; Gregory S. Turenchalk; Michael Egholm

The sensitivity of conventional DNA sequencing in tumor biopsies is limited by stromal contamination and by genetic heterogeneity within the cancer. Here, we show that microreactor-based pyrosequencing can detect rare cancer-associated sequence variations by independent and parallel sampling of multiple representatives of a given DNA fragment. This technology can thereby facilitate accurate molecular diagnosis of heterogeneous cancer specimens and enable patient selection for targeted cancer therapies. NOTE: In the version of this article initially published, it should have been acknowledged that Jan F. Simons, in addition to Roman K. Thomas and Elizabeth Nickerson, contributed equally to this work. The error has been corrected in the HTML and PDF versions of the article.


PLOS Pathogens | 2011

Discovery of an Ebolavirus-Like Filovirus in Europe

Ana Negredo; Gustavo Palacios; Sonia Vázquez-Morón; Félix González; Hernán Dopazo; Francisca Molero; Javier Juste; Juan Quetglas; Nazir Savji; Maria de la Cruz Martínez; Jesus Enrique Herrera; Manuel Pizarro; Stephen K. Hutchison; Juan Emilio Echevarría; W. Ian Lipkin; Antonio Tenorio

Filoviruses, amongst the most lethal of primate pathogens, have only been reported as natural infections in sub-Saharan Africa and the Philippines. Infections of bats with the ebolaviruses and marburgviruses do not appear to be associated with disease. Here we report identification in dead insectivorous bats of a genetically distinct filovirus, provisionally named Lloviu virus, after the site of detection, Cueva del Lloviu, in Spain.


Emerging Infectious Diseases | 2008

Novel Borna Virus in Psittacine Birds with Proventricular Dilatation Disease

Kirsi S. Honkavuori; H. L. Shivaprasad; Brent L. Williams; Phenix Lan Quan; Mady Hornig; Craig Street; Gustavo Palacios; Stephen K. Hutchison; Monique França; Michael Egholm; Thomas Briese; W. Ian Lipkin

Pyrosequencing of cDNA from brains of parrots with proventricular dilatation disease (PDD), an unexplained fatal inflammatory central, autonomic, and peripheral nervous system disease, showed 2 strains of a novel Borna virus. Real-time PCR confirmed virus presence in brain, proventriculus, and adrenal gland of 3 birds with PDD but not in 4 unaffected birds.


Emerging Infectious Diseases | 2010

Astrovirus Encephalitis in Boy with X-linked Agammaglobulinemia

Phenix Lan Quan; Thor A. Wagner; Thomas Briese; Troy R. Torgerson; Mady Hornig; Alla Tashmukhamedova; Cadhla Firth; Gustavo Palacios; Ada Baisre-de-Leon; Christopher D. Paddock; Stephen K. Hutchison; Michael Egholm; Sherif R. Zaki; James E. Goldman; Hans D. Ochs; W. Ian Lipkin

Unbiased pyrosequencing detected an astrovirus after conventional methods failed to identify the causative agent.


PLOS Pathogens | 2009

Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees

R. Scott Cornman; Yanping Chen; Michael C. Schatz; Craig Street; Yan Zhao; Brian Desany; Michael Egholm; Stephen K. Hutchison; Jeffery S. Pettis; W. Ian Lipkin; Jay D. Evans

Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee–Nosema interactions.


PLOS ONE | 2010

Heart and skeletal muscle inflammation of farmed salmon is associated with infection with a novel reovirus

Gustavo Palacios; Marie Løvoll; Torstein Tengs; Mady Hornig; Stephen K. Hutchison; Jeffrey Hui; Ruth-Torill Kongtorp; Nazir Savji; Ana Valeria Bussetti; Alexander Solovyov; Anja B. Kristoffersen; Christopher Celone; Craig Street; Vladimir Trifonov; David L. Hirschberg; Raul Rabadan; Michael Egholm; Espen Rimstad; W. Ian Lipkin

Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Kochs postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing

Jia Qian Wu; Lukas Habegger; Parinya Noisa; Anna Szekely; Caihong Qiu; Stephen K. Hutchison; Debasish Raha; Michael Egholm; Haifan Lin; Sherman M. Weissman; Wei Cui; Mark Gerstein; Michael Snyder

To examine the fundamental mechanisms governing neural differentiation, we analyzed the transcriptome changes that occur during the differentiation of hESCs into the neural lineage. Undifferentiated hESCs as well as cells at three stages of early neural differentiation—N1 (early initiation), N2 (neural progenitor), and N3 (early glial-like)—were analyzed using a combination of single read, paired-end read, and long read RNA sequencing. The results revealed enormous complexity in gene transcription and splicing dynamics during neural cell differentiation. We found previously unannotated transcripts and spliced isoforms specific for each stage of differentiation. Interestingly, splicing isoform diversity is highest in undifferentiated hESCs and decreases upon differentiation, a phenomenon we call isoform specialization. During neural differentiation, we observed differential expression of many types of genes, including those involved in key signaling pathways, and a large number of extracellular receptors exhibit stage-specific regulation. These results provide a valuable resource for studying neural differentiation and reveal insights into the mechanisms underlying in vitro neural differentiation of hESCs, such as neural fate specification, neural progenitor cell identity maintenance, and the transition from a predominantly neuronal state into one with increased gliogenic potential.


Emerging Infectious Diseases | 2011

Human Metapneumovirus Infection in Wild Mountain Gorillas, Rwanda

Gustavo Palacios; Linda J. Lowenstine; Michael R. Cranfield; Kirsten V. K. Gilardi; Lucy H. Spelman; Magda Lukasik-Braum; Jean Felix Kinani; Antoine Mudakikwa; Elisabeth Nyirakaragire; Ana Valeria Bussetti; Nazir Savji; Stephen K. Hutchison; Michael Egholm; W. Ian Lipkin

The genetic relatedness of mountain gorillas and humans has led to concerns about interspecies transmission of infectious agents. Human-to-gorilla transmission may explain human metapneumovirus in 2 wild mountain gorillas that died during a respiratory disease outbreak in Rwanda in 2009. Surveillance is needed to ensure survival of these critically endangered animals.


Journal of Virology | 2013

Characterization of the Uukuniemi Virus Group ( Phlebovirus:Bunyaviridae ): Evidence for Seven Distinct Species

Gustavo Palacios; Nazir Savji; Amelia Travassos da Rosa; Hilda Guzman; Xuejie Yu; Aaloki Desai; Gail Emilia Rosen; Stephen K. Hutchison; W. Ian Lipkin; Robert B. Tesh

ABSTRACT Evolutionary insights into the phleboviruses are limited because of an imprecise classification scheme based on partial nucleotide sequences and scattered antigenic relationships. In this report, the serologic and phylogenetic relationships of the Uukuniemi group viruses and their relationships with other recently characterized tick-borne phleboviruses are described using full-length genome sequences. We propose that the viruses currently included in the Uukuniemi virus group be assigned to five different species as follows: Uukuniemi virus, EgAn 1825-61 virus, Fin V707 virus, Chizé virus, and Zaliv Terpenia virus would be classified into the Uukuniemi species; Murre virus, RML-105-105355 virus, and Sunday Canyon virus would be classified into a Murre virus species; and Grand Arbaud virus, Precarious Point virus, and Manawa virus would each be given individual species status. Although limited sequence similarity was detected between current members of the Uukuniemi group and Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus, a clear serological reaction was observed between some of them, indicating that SFTSV and Heartland virus should be considered part of the Uukuniemi virus group. Moreover, based on the genomic diversity of the phleboviruses and given the low correlation observed between complement fixation titers and genetic distance, we propose a system for classification of the Bunyaviridae based on genetic as well as serological data. Finally, the recent descriptions of SFTSV and Heartland virus also indicate that the public health importance of the Uukuniemi group viruses must be reevaluated.

Collaboration


Dive into the Stephen K. Hutchison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Palacios

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amelia Travassos da Rosa

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge