Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Kum Jew is active.

Publication


Featured researches published by Stephen Kum Jew.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2007

Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia

Kelly A. Newell; Katerina Zavitsanou; Stephen Kum Jew; Xu-Feng Huang

The posterior cingulate cortex (PCC), a key component of the limbic system, has been implicated in the pathology of schizophrenia because of its sensitivity to NMDA receptor antagonists. Recent studies have shown that the PCC is dysfunctional in schizophrenia, and it is now suspected to be critically involved in the pathogenesis of schizophrenia. Studies also suggest that there are abnormalities in muscarinic and GABAergic neurotransmission in schizophrenia. Therefore, in the present study we used quantitative autoradiography to investigate the binding of [(3)H]pirenzepine, [(3)H]AF-DX 384 and [(3)H]muscimol, which respectively label M1/4 and M2/4 muscarinic and GABA(A) receptors, in the PCC of schizophrenia and control subjects matched for age and post-mortem interval. The present study found that [(3)H]pirenzepine binding was significantly decreased in the superficial (-24%, p=0.002) and deep (-35%, p<0.001) layers of the PCC in the schizophrenia group as compared with the control group. In contrast, a dramatic increase in [(3)H]muscimol binding was observed in the superficial (+112%, p=0.001) and deep layers (+100%, p=0.017) of the PCC in the schizophrenia group. No difference was observed for [(3)H]AF-DX 384 binding between the schizophrenia and control groups. The authors found a significant inverse correlation between [(3)H]pirenzepine binding in the deep cortical layers and [(3)H]muscimol binding in the superficial layers (rho=-0.732, p=0.003). In addition, negative correlations were also found between age and [(3)H]pirenzepine binding in both superficial and deep cortical layers (rho=-0.669 p=0.049 and rho=-0.778, p=0.014), and between age of schizophrenia onset and [(3)H]AF-DX 384 binding (rho=-0.798, p=0.018). These results for the first time demonstrated the status of M1/M4, M2/M4 and GABA(A) receptors in the PCC in schizophrenia. Whilst the exact mechanism causing these alterations is not yet known, a possible increased acetylcholine and down regulated GABA stimulation in the PCC of schizophrenia is suggested.


Acta neuropathologica communications | 2013

Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis

Roger Pamphlett; Stephen Kum Jew

BackgroundEnvironmental toxins are suspected to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). In an attempt to determine which pathways these toxins can use to enter motor neurons we compared the distribution of mercury in the CNS of a human and of mice that had been exposed to inorganic mercury.ResultsIn the human who had been exposed to metallic mercury, mercury was seen predominantly in the locus ceruleus and corticomotor neurons, as well as in scattered glial cells. In mice that had been exposed to mercury vapor or mercuric chloride, mercury was present in lower motor neurons in the spinal cord and brain stem.ConclusionsIn humans, inorganic mercury can be taken up predominantly by corticomotor neurons, possibly when the locus ceruleus is upregulated by stress. This toxin uptake into corticomotor neurons is in accord with the hypothesis that ALS originates in these upper motor neurons. In mice, inorganic mercury is taken up predominantly by lower motor neurons. The routes toxins use to enter motor neurons depends on the nature of the toxin, the duration of exposure, and possibly the amount of stress (for upper motor neuron uptake) and exercise (for lower motor neuron uptake) at the time of toxin exposure.


Acta neuropathologica communications | 2013

Heavy metals in locus ceruleus and motor neurons in motor neuron disease

Roger Pamphlett; Stephen Kum Jew

BackgroundThe causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls.ResultsHeavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals.ConclusionsUptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.


Journal of Alzheimer's Disease | 2015

Different Populations of Human Locus Ceruleus Neurons Contain Heavy Metals or Hyperphosphorylated Tau: Implications for Amyloid-β and Tau Pathology in Alzheimer's Disease.

Roger Pamphlett; Stephen Kum Jew

A marked loss of locus ceruleus (LC) neurons is a striking pathological feature of Alzheimers disease (AD). LC neurons are particularly prone to taking up circulating toxicants such as heavy metals, and hyperphosphorylated tau (tau(HYP)) appears early in these neurons. In an attempt to find out if both heavy metals and tau(HYP) could be damaging LC neurons, we looked in the LC neurons of 21 sporadic AD patients and 43 non-demented controls for the heavy metals mercury, bismuth, and silver using autometallography, and for tau(HYP) using AT8 immunostaining. Heavy metals or tau(HYP) were usually seen in separate LC neurons, and rarely co-existed within the same neuron. The number of heavy metal-containing LC neurons did not correlate with the number containing tau(HYP). Heavy metals therefore appear to occupy a mostly different population of LC neurons to those containing tau(HYP), indicating that the LC in AD is vulnerable to two different assaults. Reduced brain noradrenaline from LC damage is linked to amyloid-β deposition, and tau(HYP) in the LC may seed neurofibrillary tangles in other neurons. A model is described, incorporating the present findings, that proposes that the LC plays a part in both the amyloid-β and tau pathologies of AD.


PLOS ONE | 2017

Epigenetic differences between monozygotic twins discordant for amyotrophic lateral sclerosis (ALS) provide clues to disease pathogenesis

Paul E. Young; Stephen Kum Jew; Michael E. Buckland; Roger Pamphlett; Catherine M. Suter; Cristina Cereda

Amyotrophic lateral sclerosis (ALS) is a devastating late-onset neurodegenerative disorder in which only a small proportion of patients carry an identifiable causative genetic lesion. Despite high heritability estimates, a genetic etiology for most sporadic ALS remains elusive. Here we report the epigenetic profiling of five monozygotic twin pairs discordant for ALS, four with classic ALS and one with the progressive muscular atrophy ALS variant, in whom previous whole genome sequencing failed to uncover a genetic basis for their disease discordance. By studying cytosine methylation patterns in peripheral blood DNA we identified thousands of large between-twin differences at individual CpGs. While the specific sites of differences were mostly idiosyncratic to a twin pair, a proportion involving GABA signalling were common to all ALS individuals. For both idiosyncratic and common sites the differences occurred within genes and pathways related to neurobiological functions or dysfunctions, some of particular relevance to ALS such as glutamate metabolism and the Golgi apparatus. All four classic ALS patients were epigenetically older than their unaffected co-twins, suggesting accelerated aging in multiple tissues in this disease. In conclusion, widespread changes in methylation patterns were found in ALS-affected co-twins, consistent with an epigenetic contribution to disease. These DNA methylation findings could be used to develop blood-based ALS biomarkers, gain insights into disease pathogenesis, and provide a reference for future large-scale ALS epigenetic studies.


PLOS ONE | 2016

Age-Related Uptake of Heavy Metals in Human Spinal Interneurons.

Roger Pamphlett; Stephen Kum Jew

Toxic heavy metals have been implicated in the loss of spinal motoneurons in amyotrophic lateral sclerosis/motor neuron disease (ALS/MND). Motoneuron loss in the spinal anterior horn is severe in ALS/MND at the time of death, making this tissue unsuitable for examination. We therefore examined spinal cords of people without muscle weakness to look for any presence of heavy metals that could make these neurons susceptible to damage. Spinal cord samples from 50 individuals aged 1–95 y who had no clinical or histopathological evidence of spinal motoneuron loss were studied. Seven μm formalin-fixed paraffin-embedded sections were stained for heavy metals with silver nitrate autometallography (AMGHM) which detects intracellular mercury, silver or bismuth. Neurons in the spinal cord were classified as interneurons or α-motoneurons based on their site and cell body diameter. Spinal interneurons containing heavy metals were present in 8 of 24 people (33%) aged 61–95 y, but not at younger ages. These AMGHM interneurons were most numerous in the lumbar spinal cord, with moderate numbers in the caudal cervical cord, few in the rostral cervical cord, and almost none in the thoracic cord. All people with AMGHM interneurons had occasional AMGHM staining in α-motoneurons as well. In one man AMGHM staining was present in addition in dorsomedial nucleus and sensory neurons. In conclusion, heavy metals are present in many spinal interneurons, and in a few α-motoneurons, in a large proportion of older people. Damage to inhibitory interneurons from toxic metals in later life could result in excitotoxic injury to motoneurons and may underlie motoneuron injury or loss in conditions such as ALS/MND, multiple sclerosis, sarcopenia and calf fasciculations.


Toxicology Letters | 2011

Inorganic mercury within motor neurons does not cause the TDP-43 changes seen in sporadic ALS.

Roger Pamphlett; Stephen Kum Jew

Heavy metals have long been suspected to be involved in the pathogenesis of sporadic amyotrophic lateral sclerosis (SALS), but evidence for their toxic effects on motor neurons is limited. Characteristic mislocalisation of TDP-43 is seen in the motor neurons of patients with SALS, resulting in a lack of nuclear staining and cytoplasmic inclusions. To find out if a heavy metal can cause these TDP-43 changes, mice were exposed to varying doses of mercuric chloride or mercury vapor. Sections of spinal cord were then immunostained with phosphorylation-dependent and independent TDP-43 antibodies. All mercury-exposed mice had mercury granules in their motor neurons, even up to 2 years after exposure. However, the pathognomic changes in TDP-43 that are seen in SALS were not present in the motor neurons of these mice. The results do not therefore support a hypothesis of inorganic mercury-induced damage to motor neurons leading to SALS. This experimental model could be further used to test which of the environmental toxicants implicated in SALS may in fact cause the disease.


PLOS ONE | 2018

Age-related accumulation of toxic metals in the human locus ceruleus

Roger Pamphlett; David P. Bishop; Stephen Kum Jew; Philip Doble

Damage to the locus ceruleus has been implicated in the pathogenesis of a number of neurological conditions. Locus ceruleus neurons accumulate toxic metals such as mercury selectively, however, the presence of toxic metals in locus ceruleus neurons of people of different ages, and with a variety of disorders, is not known. To demonstrate at what age toxic metals are first detectable in the locus ceruleus, and to evaluate whether their presence is more common in certain clinicopathological conditions, we looked for these metals in 228 locus ceruleus samples. Samples were taken at coronial autopsies from individuals with a wide range of ages, pre-existing conditions and causes of death. Paraffin sections of pons containing the locus ceruleus were stained with silver nitrate autometallography, which indicates inorganic mercury, silver and bismuth within cells (termed autometallography-detected toxic metals, or AMG™). No locus ceruleus AMG neurons were seen in 38 individuals aged under 20 years. 47% of the 190 adults (ie, aged 20 years and over) had AMG locus ceruleus neurons. The proportion of adults with locus ceruleus AMG neurons increased during aging, except for a decreased proportion in the 90-plus years age group. No differences were found in the proportions of locus ceruleus AMG neurons between groups with different neurological, psychiatric, or other clinicopathological conditions, or among various causes of death. Elemental analysis with laser ablation-inductively coupled plasma-mass spectrometry was used to cross-validate the metals detected by AMG, by looking for silver, gold, bismuth, cadmium, chromium, iron, mercury, nickel, and lead in the locus ceruleus of ten individuals. This confirmed the presence of mercury in locus ceruleus samples containing AMG neurons, and showed cadmium, silver, lead, iron, and nickel in the locus ceruleus of some individuals. In conclusion, toxic metals stained by AMG (most likely inorganic mercury) appear in locus ceruleus neurons in early adult life. About half of adults in this study had locus ceruleus neurons containing inorganic mercury, and elemental analysis found a range of other toxic metals in the locus ceruleus. Locus ceruleus inorganic mercury increased during aging, except for a decrease in advanced age, but was not found more often in any single clinicopathological condition or cause of death.


bioRxiv | 2016

Monozygotic twin pairs discordant for amyotrophic lateral sclerosis carry both common and unique epigenetic differences relevant to disease

Paul E. Young; Stephen Kum Jew; Michael E. Buckland; Roger Pamphlett; Catherine M. Suter

Amyotrophic lateral sclerosis (ALS) is a devastating late-onset neurodegenerative disorder in which only a small proportion of patients carry an identifiable causative genetic lesion. Despite high heritability estimates, a genetic etiology for most sporadic ALS remains elusive. Here we report the epigenetic profiling of five monozygotic twin pairs discordant for ALS in whom previous genome sequencing excluded a genetic basis for their disease discordance. By studying cytosine methylation patterns in peripheral blood DNA we identified thousands of large between-twin differences at individual CpGs. While the specific sites of difference were largely idiosyncratic to a twin pair, a proportion (involving GABA signalling) were common to all affected individuals. In both instances the differences occurred within genes and pathways related to neurobiological function and dysfunction. Our findings reveal widespread changes in epigenetic marks in ALS patients, consistent with an epigenetic contribution to disease. These findings may be exploited to develop blood-based biomarkers of ALS and develop further insight into disease pathogenesis. We expect that our findings will provide a useful point of reference for further large scale studies of sporadic ALS.


Biometals | 2016

Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury

Roger Pamphlett; Stephen Kum Jew

Collaboration


Dive into the Stephen Kum Jew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine M. Suter

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael E. Buckland

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul E. Young

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar

Katerina Zavitsanou

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge