Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen L. Lessnick is active.

Publication


Featured researches published by Stephen L. Lessnick.


Nature | 2007

RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels

Nicholas Yagoda; Moritz von Rechenberg; Elma Zaganjor; Andras J. Bauer; Wan Seok Yang; Daniel J. Fridman; Adam J. Wolpaw; Inese Smukste; John M. Peltier; J. Jay Boniface; Richard D. Smith; Stephen L. Lessnick; Sudhir Sahasrabudhe; Brent R. Stockwell

Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS–RAF–MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)—a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS–RAF–MEK pathway.


Molecular Cancer Research | 2006

NR0B1 Is Required for the Oncogenic Phenotype Mediated by EWS/FLI in Ewing's Sarcoma

Michelle Kinsey; Richard D. Smith; Stephen L. Lessnick

A number of solid tumors, such as alveolar rhabdomyosarcoma, synovial sarcoma, and myxoid liposarcoma, are associated with recurrent translocation events that encode fusion proteins. Ewings sarcoma is a pediatric tumor that serves as a prototype for this tumor class. Ewings sarcomas usually harbor the (11;22)(q24;q12) translocation. The t(11;22) encodes the EWS/FLI fusion oncoprotein. EWS/FLI functions as an aberrant transcription factor, but the key target genes that are involved in oncogenesis are largely unknown. Although some target genes have been defined, many of these have been identified in heterologous model systems with uncertain relevance to the human disease. To understand the function of EWS/FLI and its targets in a more clinically relevant system, we used retroviral-mediated RNAi to “knock-down” the fusion protein in patient-derived Ewings sarcoma cell lines. By combining transcriptional profiling data from three of these lines, we identified a conserved transcriptional response to EWS/FLI. The gene that was most reproducibly up-regulated by EWS/FLI was NR0B1. NR0B1 is a developmentally important orphan nuclear receptor with no previously defined role in oncogenesis. We validated NR0B1 as an EWS/FLI-dysregulated gene and confirmed its expression in primary human tumor samples. Functional studies revealed that ongoing NR0B1 expression is required for the transformed phenotype of Ewings sarcoma. These studies define a new role for NR0B1 in oncogenic transformation and emphasize the utility of analyzing the function of EWS/FLI in Ewings sarcoma cells. (Mol Cancer Res 2006;4(11):851–7)


Proceedings of the National Academy of Sciences of the United States of America | 2008

Microsatellites as EWS/FLI response elements in Ewing's sarcoma

Kunal Gangwal; Savita Sankar; Peter C. Hollenhorst; Michelle Kinsey; Stephen C. Haroldsen; Atul A. Shah; Kenneth M. Boucher; W. Scott Watkins; Lynn B. Jorde; Barbara J. Graves; Stephen L. Lessnick

The ETS gene family is frequently involved in chromosome translocations that cause human cancer, including prostate cancer, leukemia, and sarcoma. However, the mechanisms by which oncogenic ETS proteins, which are DNA-binding transcription factors, target genes necessary for tumorigenesis is not well understood. Ewings sarcoma serves as a paradigm for the entire class of ETS-associated tumors because nearly all cases harbor recurrent chromosomal translocations involving ETS genes. The most common translocation in Ewings sarcoma encodes the EWS/FLI oncogenic transcription factor. We used whole genome localization (ChIP-chip) to identify target genes that are directly bound by EWS/FLI. Analysis of the promoters of these genes demonstrated a significant over-representation of highly repetitive GGAA-containing elements (microsatellites). In a parallel approach, we found that EWS/FLI uses GGAA microsatellites to regulate the expression of some of its target genes including NR0B1, a gene required for Ewings sarcoma oncogenesis. The microsatellite in the NR0B1 promoter bound EWS/FLI in vitro and in vivo and was both necessary and sufficient to confer EWS/FLI regulation to a reporter gene. Genome wide computational studies demonstrated that GGAA microsatellites were enriched close to EWS/FLI-up-regulated genes but not down-regulated genes. Mechanistic studies demonstrated that the ability of EWS/FLI to bind DNA and modulate gene expression through these repetitive elements depended on the number of consecutive GGAA motifs. These findings illustrate an unprecedented route to specificity for ETS proteins and use of microsatellites in tumorigenesis.


Oncogene | 2010

Recent Advances in the Molecular Pathogenesis of Ewing's Sarcoma

Elizabeth C. Toomey; Joshua D. Schiffman; Stephen L. Lessnick

Tumor development is a complex process resulting from interplay between mutations in oncogenes and tumor suppressors, host susceptibility factors, and cellular context. Great advances have been made by studying rare tumors with unique clinical, genetic, or molecular features. Ewings sarcoma serves as an excellent paradigm for understanding tumorigenesis because it exhibits some very useful and important characteristics. For example, nearly all cases of Ewings sarcoma contain the (11;22)(q24;q12) chromosomal translocation that encodes the EWS/FLI oncoprotein. Besides the t(11;22), however, many cases have otherwise simple karyotypes with no other demonstrable abnormalities. Furthermore, it seems that an underlying genetic susceptibility to Ewings sarcoma, if it exists, must be rare. These two features suggest that EWS/FLI is the primary mutation that drives the development of this tumor. Finally, Ewings sarcoma is an aggressive tumor that requires aggressive treatment. Thus, improved understanding of the pathogenesis of this tumor will not only be of academic interest, but may also lead to new therapeutic approaches for individuals afflicted with this disease. The purpose of this review is to highlight recent advances in understanding the molecular pathogenesis of Ewings sarcoma, while considering the questions surrounding this disease that still remain and how this knowledge may be applied to developing new treatments for patients with this highly aggressive disease.


Journal of Clinical Oncology | 2010

Current Treatment Protocols Have Eliminated the Prognostic Advantage of Type 1 Fusions in Ewing Sarcoma: A Report From the Children's Oncology Group

John van Doorninck; Lingyun Ji; Betty Schaub; Hiroyuki Shimada; Michele R. Wing; Mark Krailo; Stephen L. Lessnick; Neyssa Marina; Timothy J. Triche; Richard Sposto; Richard B. Womer; Elizabeth R. Lawlor

PURPOSE Ewing sarcoma family tumors (ESFTs) exhibit chromosomal translocations that lead to the creation of chimeric fusion oncogenes. Combinatorial diversity among chromosomal breakpoints produces varying fusions. The type 1 EWS-FLI1 transcript is created as a result of fusion between exons 7 of EWS and 6 of FLI1, and retrospective studies have reported that type 1 tumors are associated with an improved outcome. We have re-examined this association in a prospective cohort of patients with ESFT treated according to current Childrens Oncology Group (COG) treatment protocols. METHODS Frozen tumor tissue was prospectively obtained from patients diagnosed with ESFT, and reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine translocation status. Analysis was confined to patients with localized tumors who were diagnosed after 1994 and treated according to COG protocols. Translocation status was correlated with disease characteristics, event-free survival (EFS), and overall survival (OS). Results RT-PCR identified chimeric fusion oncogenes in 119 of 132 ESFTs. Eighty-nine percent of identified transcripts were EWS-FLI1, and of these, 58.8% were type 1. Five-year EFS and OS rates for patients with type 1 and non-type 1 fusions diagnosed between 2001 and 2005 were equivalent (type 1: EFS, 63% +/- 7%; OS, 83% +/- 6%; non-type 1: EFS, 71% +/- 9%; OS, 79% +/- 8%). CONCLUSION Current intensive treatment protocols for localized ESFT have erased the clinical disadvantage that was formerly observed in patients with non-type 1 EWS-FLI1 fusions.


PLOS ONE | 2008

EWS/FLI Mediates Transcriptional Repression via NKX2.2 during Oncogenic Transformation in Ewing's Sarcoma

Leah A. Owen; Ashley A. Kowalewski; Stephen L. Lessnick

EWS/FLI is a master regulator of Ewings sarcoma formation. Gene expression studies in A673 Ewings sarcoma cells have demonstrated that EWS/FLI downregulates more genes than it upregulates, suggesting that EWS/FLI, and/or its targets, function as transcriptional repressors. One critical EWS/FLI target, NKX2.2, is a transcription factor that contains both transcriptional activation and transcriptional repression domains, raising the possibility that it mediates portions of the EWS/FLI transcriptional signature. We now report that microarray analysis demonstrated that the transcriptional profile of NKX2.2 consists solely of downregulated genes, and overlaps with the EWS/FLI downregulated signature, suggesting that NKX2.2 mediates oncogenic transformation via transcriptional repression. Structure-function analysis revealed that the DNA binding and repressor domains in NKX2.2 are required for oncogenesis in Ewings sarcoma cells, while the transcriptional activation domain is completely dispensable. Furthermore, blockade of TLE or HDAC function, two protein families thought to mediate the repressive function of NKX2.2, inhibited the transformed phenotype and reversed the NKX2.2 transcriptional profile in Ewings sarcoma cells. Whole genome localization studies (ChIP-chip) revealed that a significant portion of the NKX2.2-repressed gene expression signature was directly mediated by NKX2.2 binding. These data demonstrate that the transcriptional repressive function of NKX2.2 is necessary, and sufficient, for the oncogenic phenotype of Ewings sarcoma, and suggest a therapeutic approach to this disease.


Cell Cycle | 2008

A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature.

Jeffrey D. Hancock; Stephen L. Lessnick

Ewings sarcomas are characterized by recurrent chromosomal translocations expressing EWS-ETS fusion proteins, the most common of which is EWS-FLI1-5. EWS-FLI is an oncogenic transcription factor that regulates genes involved in tumorigenesis.6,7 Because the Ewings sarcoma cell of origin remains unknown, a variety of model systems have been developed to study EWS-FLI fusions,8-14 and multiple microarray experiments describing potential EWS-FLI target genes have been reported.8,10,11,13,15-21 Each model has potential benefits and drawbacks, but a large-scale comparison of these has not been reported. Herein we report a meta-analysis of the genes that are dysregulated by EWS-FLI in Ewing’s sarcoma model systems. In general, EWS-FLI gain- and loss-of-function models in human cell types were well correlated to patient-derived tumor samples, while murine models were not. Using frequency analysis of dysregulated genes across multiple model systems, we identified a conserved “core” EWS-FLI transcriptional signature. This signature contained many of the genes known to be involved in the tumorigenic phenotype of Ewing’s sarcoma, and also contained genes that have not been previously reported. Comparisons between the core EWS-FLI signature and published mesenchymal stem cell data support the recent assertion that mesenchymal stem cells are likely the Ewing’s sarcoma precursor cell15. These results demonstrate the utility of using comparative analysis to validate model systems and emphasize the unique potential of this approach to identify both oncogenic and background cell signatures.


Annual Review of Pathology-mechanisms of Disease | 2012

Molecular Pathogenesis of Ewing Sarcoma: New Therapeutic and Transcriptional Targets

Stephen L. Lessnick; Marc Ladanyi

Approximately one-third of sarcomas contain specific translocations. Ewing sarcoma is the prototypical member of this group of sarcomas; it was the first to be recognized pathologically as a singular entity and to have its signature translocation defined cytogenetically, which led to the identification of its key driver alteration, the EWS-FLI1 gene fusion that encodes this aberrant, chimeric transcription factor. We review recent progress in selected areas of Ewing sarcoma research, including the application of genome-wide chromatin immunoprecipitation analyses, to provide a comprehensive view of the EWS-FLI1 target gene repertoire, the identification of EWS-FLI1 target genes that may also point to therapeutically targetable pathways, and data from model systems as they relate to the elusive cell of origin of Ewing sarcoma and its possible similarities to mesenchymal stem cells.


Journal of Clinical Investigation | 2010

CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis.

Anna Rocchi; Maria Cristina Manara; Marika Sciandra; Diana Zambelli; Filippo Nardi; Giordano Nicoletti; Cecilia Garofalo; Stefania Meschini; Annalisa Astolfi; Mario P. Colombo; Stephen L. Lessnick; Piero Picci; Katia Scotlandi

Ewing sarcoma (EWS) is an aggressive bone tumor of uncertain cellular origin. CD99 is a membrane protein that is expressed in most cases of EWS, although its function in the disease is unknown. Here we have shown that endogenous CD99 expression modulates EWS tumor differentiation and malignancy. We determined that knocking down CD99 expression in human EWS cell lines reduced their ability to form tumors and bone metastases when xenografted into immunodeficient mice and diminished their tumorigenic characteristics in vitro. Further, reduction of CD99 expression resulted in neurite outgrowth and increased expression of beta-III tubulin and markers of neural differentiation. Analysis of a panel of human EWS cells revealed an inverse correlation between CD99 and H-neurofilament expression, as well as an inverse correlation between neural differentiation and oncogenic transformation. As knockdown of CD99 also led to an increase in phosphorylation of ERK1/2, we suggest that the CD99-mediated prevention of neural differentiation of EWS occurs through MAPK pathway modulation. Together, these data indicate a new role for CD99 in preventing neural differentiation of EWS cells and suggest that blockade of CD99 or its downstream molecular pathway may be a new therapeutic approach for EWS.


Oncogene | 2013

Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma.

Savita Sankar; Russell Bell; Bret Stephens; Rupeng Zhuo; Sunil Sharma; David J. Bearss; Stephen L. Lessnick

Ewing sarcoma provides an important model for transcription-factor-mediated oncogenic transformation because of its reliance on the ETS-type fusion oncoprotein EWS/FLI. EWS/FLI functions as a transcriptional activator and transcriptional activation is required for its oncogenic activity. Here, we demonstrate that a previously less-well characterized transcriptional repressive function of the EWS/FLI fusion is also required for the transformed phenotype of Ewing sarcoma. Through comparison of EWS/FLI transcriptional profiling and genome-wide localization data, we define the complement of EWS/FLI direct downregulated target genes. We demonstrate that LOX is a previously undescribed EWS/FLI-repressed target that inhibits the transformed phenotype of Ewing sarcoma cells. Mechanistic studies demonstrate that the NuRD co-repressor complex interacts with EWS/FLI, and that its associated histone deacetylase and LSD1 activities contribute to the repressive function. Taken together, these data reveal a previously unknown molecular function for EWS/FLI, demonstrate a more highly coordinated oncogenic transcriptional hierarchy mediated by EWS/FLI than previously suspected, and implicate a new paradigm for therapeutic intervention aimed at controlling NuRD activity in Ewing sarcoma tumors.

Collaboration


Dive into the Stephen L. Lessnick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Krailo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Gorlick

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge