Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen L. Nutt is active.

Publication


Featured researches published by Stephen L. Nutt.


Nature | 1999

Commitment to the B-lymphoid lineage depends on the transcription factor Pax5

Stephen L. Nutt; Barry Heavey; Antonius Rolink; Meinrad Busslinger

The Pax5 gene encoding the B-cell-specific activator protein (BSAP) is expressed within the haematopoietic system exclusively in the B-lymphoid lineage, where it is required in vivo for progression beyond the pro-B-cell stage. However, Pax5 is not essential for in vitro propagation of pro-B cells in the presence of interleukin-7 and stromal cells. Here we show that pro-B cells lacking Pax5 are also incapable of in vitro B-cell differentiation unless Pax5 expression is restored by retroviral transduction. Pax5-/- pro-B cells are not restricted in their lineage fate, as stimulation with appropriate cytokines induces them to differentiate into functional macrophages, osteoclasts, dendritic cells, granulocytes and natural killer cells. As expected for a clonogenic haematopoietic progenitor with lymphomyeloid developmental potential, the Pax5-/- pro-B cell expresses genes of different lineage-affiliated programmes, and restoration of Pax5 activity represses this lineage-promiscuous transcription. Pax5 therefore plays an essential role in B-lineage commitment by suppressing alternative lineage choices.


Journal of Experimental Medicine | 2010

IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism

Dimitra Zotos; Jonathan M. Coquet; Yang Zhang; Amanda Light; Kathy D'Costa; Axel Kallies; Lynn M. Corcoran; Dale I. Godfrey; Kai-Michael Toellner; Mark J. Smyth; Stephen L. Nutt; David M. Tarlinton

Germinal centers (GCs) are sites of B cell proliferation, somatic hypermutation, and selection of variants with improved affinity for antigen. Long-lived memory B cells and plasma cells are also generated in GCs, although how B cell differentiation in GCs is regulated is unclear. IL-21, secreted by T follicular helper cells, is important for adaptive immune responses, although there are conflicting reports on its target cells and mode of action in vivo. We show that the absence of IL-21 signaling profoundly affects the B cell response to protein antigen, reducing splenic and bone marrow plasma cell formation and GC persistence and function, influencing their proliferation, transition into memory B cells, and affinity maturation. Using bone marrow chimeras, we show that these activities are primarily a result of CD3-expressing cells producing IL-21 that acts directly on B cells. Molecularly, IL-21 maintains expression of Bcl-6 in GC B cells. The absence of IL-21 or IL-21 receptor does not abrogate the appearance of T cells in GCs or the appearance of CD4 T cells with a follicular helper phenotype. IL-21 thus controls fate choices of GC B cells directly.


Nature Immunology | 2010

The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation

Hua Chen Chang; Sarita Sehra; Ritobrata Goswami; Weiguo Yao; Qing Yu; Gretta L. Stritesky; Rukhsana Jabeen; Carl McKinley; Ayele Nati N Ahyi; Ling Han; Evelyn T. Nguyen; Michael J. Robertson; Narayanan B. Perumal; Robert S. Tepper; Stephen L. Nutt; Mark H. Kaplan

CD4+ helper T cells acquire effector phenotypes that promote specialized inflammatory responses. We show that the ETS-family transcription factor PU.1 was required for the development of an interleukin 9 (IL-9)-secreting subset of helper T cells. Decreasing PU.1 expression either by conditional deletion in mouse T cells or the use of small interfering RNA in human T cells impaired IL-9 production, whereas ectopic PU.1 expression promoted IL-9 production. Mice with PU.1-deficient T cells developed normal T helper type 2 (TH2) responses in vivo but showed attenuated allergic pulmonary inflammation that corresponded to lower expression of Il9 and chemokines in peripheral T cells and in lungs than that of wild-type mice. Together our data suggest a critical role for PU.1 in generating the IL-9-producing (TH9) phenotype and in the development of allergic inflammation.


Nature | 1999

Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors

Antonius Rolink; Stephen L. Nutt; Fritz Melchers; Meinrad Busslinger

The mechanisms controlling the commitment of haematopoietic progenitors to the B-lymphoid lineage are poorly understood. The observations that mice deficient in E2A and EBF lack B-lineage cells have implicated these two transcription factors in the commitment process. Moreover, the expression of genes encoding components of the rearrangement machinery (RAG1, RAG2, TdT) or pre-B-cell receptor (λ5, VpreB, Igα, Igβ) has been considered to indicate B-lineage commitment. All these genes including E2A and EBF are expressed in pro-B cells lacking the transcription factor Pax5 (refs 5,6,7). Here we show that cloned Pax5-deficient pro-B cells transferred into RAG2-deficient mice provide long-term reconstitution of the thymus and give rise to mature T cells expressing α/β-T-cell receptors. The bone marrow of these mice contains a population of cells of Pax5-/- origin with the same phenotype as the donor pro-B cells. When transferred into secondary recipients, these pro-B cells again home to the bone marrow and reconstitute the thymus. Hence, B-lineage commitment is determined neither by immunoglobulin DJ rearrangement nor by the expression of E2A, EBF, λ5, VpreB, Igα and Igβ. Instead, our data implicate Pax5 in the control of B-lineage commitment.


Journal of Experimental Medicine | 2004

Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression

Axel Kallies; Jhagvaral Hasbold; David M. Tarlinton; Wendy Dietrich; Lynn M. Corcoran; Philip D. Hodgkin; Stephen L. Nutt

Plasma cells comprise a population of terminally differentiated B cells that are dependent on the transcriptional regulator B lymphocyte–induced maturation protein 1 (Blimp-1) for their development. We have introduced a gfp reporter into the Blimp-1 locus and shown that heterozygous mice express the green fluorescent protein in all antibody-secreting cells (ASCs) in vivo and in vitro. In vitro, these cells display considerable heterogeneity in surface phenotype, immunoglobulin secretion rate, and Blimp-1 expression levels. Importantly, analysis of in vivo ASCs induced by immunization reveals a developmental pathway in which increasing levels of Blimp-1 expression define developmental stages of plasma cell differentiation that have many phenotypic and molecular correlates. Thus, maturation from transient plasmablast to long-lived ASCs in bone marrow is predicated on quantitative increases in Blimp-1 expression.


The EMBO Journal | 1998

Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments.

Stephen L. Nutt; Aline M. Morrison; P Dörfler; Antonius Rolink; Meinrad Busslinger

The Pax‐5 gene codes for the transcription factor BSAP which is essential for the progression of adult B lymphopoiesis beyond an early progenitor (pre‐BI) cell stage. Although several genes have been proposed to be regulated by BSAP, CD19 is to date the only target gene which has been genetically confirmed to depend on this transcription factor for its expression. We have now taken advantage of cultured pre‐BI cells of wild‐type and Pax‐5 mutant bone marrow to screen a large panel of B lymphoid genes for additional BSAP target genes. Four differentially expressed genes were shown to be under the direct control of BSAP, as their expression was rapidly regulated in Pax‐5‐deficient pre‐BI cells by a hormone‐inducible BSAP–estrogen receptor fusion protein. The genes coding for the B‐cell receptor component Ig‐α (mb‐1) and the transcription factors N‐myc and LEF‐1 are positively regulated by BSAP, while the gene coding for the cell surface protein PD‐1 is efficiently repressed. Distinct regulatory mechanisms of BSAP were revealed by reconstituting Pax‐5‐deficient pre‐BI cells with full‐length BSAP or a truncated form containing only the paired domain. IL‐7 signalling was able to efficiently induce the N‐myc gene only in the presence of full‐length BSAP, while complete restoration of CD19 synthesis was critically dependent on the BSAP protein concentration. In contrast, the expression of the mb‐1 and LEF‐1 genes was already reconstituted by the paired domain polypeptide lacking any transactivation function, suggesting that the DNA‐binding domain of BSAP is sufficient to recruit other transcription factors to the regulatory regions of these two genes. In conclusion, these loss‐ and gain‐of‐function experiments demonstrate that BSAP regulates four newly identified target genes as a transcriptional activator, repressor or docking protein depending on the specific regulatory sequence context.


Immunity | 2009

Blimp-1 Transcription Factor Is Required for the Differentiation of Effector CD8+ T Cells and Memory Responses

Axel Kallies; Annie Xin; Gabrielle T. Belz; Stephen L. Nutt

In response to viral infection, naive CD8(+) T cells proliferate and differentiate into cytotoxic and cytokine-producing effector cells. Here we showed that the transcription factor Blimp-1, a crucial regulator of plasma cell differentiation, was required for CD8(+) T cells to differentiate into functional killer T cells in response to influenza virus. Blimp-1 was not essential for the generation of memory T cells but was crucial for their efficient recall response upon reinfection. Antigen-specific Blimp-1-deficient CD8(+) T cells failed to appropriately regulate the transcriptional program essential for killer T cell responses and showed impaired migration to the site of infection. This study identifies Blimp-1 as a master regulator of the terminal differentiation of CD8(+) effector T cells and uncovers a conservation of the pathways that regulate the terminal differentiation of T and B cells.


Nature Immunology | 2011

The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells

Erika Cretney; Annie Xin; Wei Shi; Martina Minnich; Frederick Masson; Maria Miasari; Gabrielle T. Belz; Gordon K. Smyth; Meinrad Busslinger; Stephen L. Nutt; Axel Kallies

Regulatory T cells (Treg cells) are required for peripheral tolerance. Evidence indicates that Treg cells can adopt specialized differentiation programs in the periphery that are controlled by transcription factors usually associated with helper T cell differentiation. Here we demonstrate that expression of the transcription factor Blimp-1 defined a population of Treg cells that localized mainly to mucosal sites and produced IL-10. Blimp-1 was required for IL-10 production by these cells and for their tissue homeostasis. We provide evidence that the transcription factor IRF4, but not the transcription factor T-bet, was essential for Blimp-1 expression and for the differentiation of all effector Treg cells. Thus, our study defines a differentiation pathway that leads to the acquisition of Treg cell effector functions and requires both IRF4 and Blimp-1.


Journal of Experimental Medicine | 2005

Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors

Stephen L. Nutt; Donald Metcalf; Angela D'Amico; Matthew Polli; Li Wu

PU.1 is an Ets family transcription factor that is essential for fetal liver hematopoiesis. We have generated a PU.1 gfp reporter strain that allowed us to examine the expression of PU.1 in all hematopoietic cell lineages and their early progenitors. Within the bone marrow progenitor compartment, PU.1 is highly expressed in the hematopoietic stem cell, the common lymphoid progenitor, and a proportion of common myeloid progenitors (CMPs). Based on Flt3 and PU.1 expression, the CMP could be divided into three subpopulations, Flt3+ PU.1hi, Flt3− PU.1hi, and Flt3− PU.1lo CMPs. Colony-forming assays and in vivo lineage reconstitution demonstrated that the Flt3+ PU.1hi and Flt3− PU.1hi CMPs were efficient precursors for granulocyte/macrophage progenitors (GMPs), whereas the Flt3− PU.1lo CMPs were highly enriched for committed megakaryocyte/erythrocyte progenitors (MEPs). CMPs have been shown to rapidly differentiate into GMPs and MEPs in vitro. Interestingly, short-term culture revealed that the Flt3+ PU.1hi and Flt3− PU.1hi CMPs rapidly became CD16/32high (reminiscent of GMPs) in culture, whereas the Flt3− PU.1lo CMPs were the immediate precursors of the MEP. Thus, down-regulation of PU.1 expression in the CMP is the first molecularly identified event associated with the restriction of differentiation to erythroid and megakaryocyte lineages.


Immunity | 2009

Analysis of Interleukin-21-Induced Prdm1 Gene Regulation Reveals Functional Cooperation of STAT3 and IRF4 Transcription Factors

Hyokjoon Kwon; Danielle Thierry-Mieg; Jean Thierry-Mieg; Hyoung-Pyo Kim; Jangsuk Oh; Chainarong Tunyaplin; Sebastian Carotta; Colleen E. Donovan; Matthew L. Goldman; Prafullakumar Tailor; Keiko Ozato; David E. Levy; Stephen L. Nutt; Kathryn Calame; Warren J. Leonard

Interleukin-21 (IL-21) is a pleiotropic cytokine that induces expression of transcription factor BLIMP1 (encoded by Prdm1), which regulates plasma cell differentiation and T cell homeostasis. We identified an IL-21 response element downstream of Prdm1 that binds the transcription factors STAT3 and IRF4, which are required for optimal Prdm1 expression. Genome-wide ChIP-Seq mapping of STAT3- and IRF4-binding sites showed that most regions with IL-21-induced STAT3 binding also bound IRF4 in vivo and furthermore revealed that the noncanonical TTCnnnTAA GAS motif critical in Prdm1 was broadly used for STAT3 binding. Comparing genome-wide expression array data to binding sites revealed that most IL-21-regulated genes were associated with combined STAT3-IRF4 sites rather than pure STAT3 sites. Correspondingly, ChIP-Seq analysis of Irf4(-/-) T cells showed greatly diminished STAT3 binding after IL-21 treatment, and Irf4(-/-) mice showed impaired IL-21-induced Tfh cell differentiation in vivo. These results reveal broad cooperative gene regulation by STAT3 and IRF4.

Collaboration


Dive into the Stephen L. Nutt's collaboration.

Top Co-Authors

Avatar

Axel Kallies

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Gabrielle T. Belz

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sebastian Carotta

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon K. Smyth

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Meinrad Busslinger

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar

Wei Shi

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mark J. Smyth

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge