Stephen Levy
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Levy.
Chemical Society Reviews | 2010
Stephen Levy; Harold G. Craighead
Fluidic systems with nanometre length scales enable sensitive analysis of DNA molecules. Nanofluidic systems have been used to probe conformational, dynamic, and entropic properties of DNA molecules, to rapidly sort DNA molecules based on length dependent interactions with their confining environment, and for determining the spatial location of genetic information along long DNA molecules. In this critical review, recent experiments utilizing fluidic systems comprised of nanochannels, nanoslits, nanopores, and zero-mode waveguides for DNA analysis are reviewed (161 references).
Analytical Chemistry | 2010
Benjamin R. Cipriany; Zhao Rq; Patrick J. Murphy; Stephen Levy; Christine P. Tan; Harold G. Craighead; Paul D. Soloway
Epigenetic states are governed by DNA methylation and a host of modifications to histones bound with DNA. These states are essential for proper developmentally regulated gene expression and are perturbed in many diseases. There is great interest in identifying epigenetic mark placement genome wide and understanding how these marks vary among cell types, with changes in environment or according to health and disease status. Current epigenomic analyses employ bisulfite sequencing and chromatin immunoprecipitation, but query only one type of epigenetic mark at a time, DNA methylation, or histone modifications and often require substantial input material. To overcome these limitations, we established a method using nanofluidics and multicolor fluorescence microscopy to detect DNA and histones in individual chromatin fragments at about 10 Mbp/min. We demonstrated its utility for epigenetic analysis by identifying DNA methylation on individual molecules. This technique will provide the unprecedented opportunity for genome wide, simultaneous analysis of multiple epigenetic states on single molecules.
Nano Letters | 2008
Stephen Levy; John T. Mannion; Ji Cheng; Christian H. Reccius; Harold G. Craighead
Single DNA molecules confined to nanoscale fluidic channels extend along the channel axis in order to minimize their conformational free energy. When such molecules are forced into a nanoscale fluidic channel under the application of an external electric field, monomers near the middle of the DNA molecule may enter first, resulting in a folded configuration with less entropy than an unfolded molecule. The increased free energy of a folded molecule results in two effects: an increase in extension factor per unit length for each segment of the molecule, and a spatially localized force that causes the molecule to spontaneously unfold. The ratio of this unfolding force to hydrodynamic friction per DNA contour length is measured in nanochannels with two different diameters.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Benjamin R. Cipriany; Patrick J. Murphy; James A. Hagarman; Aline Cerf; David R. Latulippe; Stephen Levy; Jaime J. Benítez; Christine P. Tan; Juraj Topolancik; Paul D. Soloway; Harold G. Craighead
Epigenetic modifications, such as DNA and histone methylation, are responsible for regulatory pathways that affect disease. Current epigenetic analyses use bisulfite conversion to identify DNA methylation and chromatin immunoprecipitation to collect molecules bearing a specific histone modification. In this work, we present a proof-of-principle demonstration for a new method using a nanofluidic device that combines real-time detection and automated sorting of individual molecules based on their epigenetic state. This device evaluates the fluorescence from labeled epigenetic modifications to actuate sorting. This technology has demonstrated up to 98% accuracy in molecule sorting and has achieved postsorting sample recovery on femtogram quantities of genetic material. We have applied it to sort methylated DNA molecules using simultaneous, multicolor fluorescence to identify methyl binding domain protein-1 (MBD1) bound to full-duplex DNA. The functionality enabled by this nanofluidic platform now provides a workflow for color-multiplexed detection, sorting, and recovery of single molecules toward subsequent DNA sequencing.
Lab on a Chip | 2012
Jaime J. Benítez; Juraj Topolancik; Harvey C. Tian; Christopher B. Wallin; David R. Latulippe; Kylan Szeto; Patrick J. Murphy; Benjamin R. Cipriany; Stephen Levy; Paul D. Soloway; Harold G. Craighead
We describe a microfluidic device for the extraction, purification and stretching of human chromosomal DNA from single cells. A two-dimensional array of micropillars in a microfluidic polydimethylsiloxane channel was designed to capture a single human cell. Megabase-long DNA strands released from the cell upon lysis are trapped in the micropillar array and stretched under optimal hydrodynamic flow conditions. Intact chromosomal DNA is entangled in the array, while other cellular components are washed from the channel. To demonstrate the entrapment principle, a single chromosome was hybridized to whole chromosome paints, and imaged by fluorescence microscopy. DNA extracted from a single cell and small cell populations (less than 100) was released from the device by restriction endonuclease digestion under continuous flow and collected for off-chip analysis. Quantification of the extracted material reveals that the microdevice efficiently extracts essentially all chromosomal DNA. The device described represents a novel platform to perform a variety of analyses on chromosomal DNA at the single cell level.
Biomicrofluidics | 2014
Lingling Wu; Stephen Levy
We studied the mobility of DNA molecules driven by an electric field through a nanofluidic device containing a periodic array of deep and shallow regions termed entropic traps. The mobility of a group of DNA molecules was measured by fluorescent video microscopy. Since the depth of a shallow region is smaller than the DNA equilibrium size, DNA molecules are trapped for a characteristic time and must compress themselves to traverse the boundary between deep and shallow regions. Consistent with previous experimental results, we observed a nonlinear relationship between the mobility and electric field strength, and that longer DNA molecules have larger mobility. In repeated measurements under seemingly identical conditions, we measured fluctuations in the mobility significantly larger than expected from statistical variation. The variation was more pronounced for lower electric field strengths where the trapping time is considerable relative to the drift time. To determine the origin of these fluctuations, we investigated the dependence of the mobility on several variables: DNA concentration, ionic strength of the solvent, fluorescent dye staining ratio, electroosmotic flow, and electric field strength. The mobility fluctuations were moderately enhanced in conditions of reduced ionic strength and electroosmotic flow.
Archive | 2003
Stephen Levy
This dissertation presents a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002. We study events in which one neutral B meson decay to the CP-eigenstates J/{psi} K{sub S}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and {eta}{sub c}K{sub S}{sup 0}, or to flavor-eigenstates involving D{sup (*)}{pi}/{rho}/a{sub 1} and J/{psi}K*{sup 0}(K*{sup 0} {yields} K{sup +} {pi}{sup -}), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly using the charge of identified leptons and kaons. The proper time elapsed between the meson decays is determined by measuring the distance between the decay vertices. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2{beta}, is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor- and CP-eigenstate samples. We measure sin2{beta} = 0.755 {+-} 0.074 (stat) {+-} 0.030 (syst).
Macromolecules | 2010
Jing Tang; Stephen Levy; Daniel W. Trahan; Jeremy J. Jones; Harold G. Craighead; Patrick S. Doyle
Macromolecules | 2008
Elizabeth A. Strychalski; Stephen Levy; Harold G. Craighead
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004
A. Affolder; M. Axer; D. Barge; F. Beißel; C. Campagnari; G. Flügge; T. Franke; B. Hegner; Th. Hermanns; St. Kasselmann; J. Incandela; Stephen Levy; Joachim Mnich; A. Nowack; O. Pooth; B. Patterson; M. Pöttgens