Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen M. Hewitt is active.

Publication


Featured researches published by Stephen M. Hewitt.


Nature Medicine | 2004

The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis.

Chand Khanna; Xiaolin Wan; Seuli Bose; Ryan D. Cassaday; Osarenoma Olomu; Arnulfo Mendoza; Choh Yeung; Richard Gorlick; Stephen M. Hewitt; Lee J. Helman

Metastatic cancers, once established, are the primary cause of mortality associated with cancer. Previously, we used a genomic approach to identify metastasis-associated genes in cancer. From this genomic data, we selected ezrin for further study based on its role in physically and functionally connecting the actin cytoskeleton to the cell membrane. In a mouse model of osteosarcoma, a highly metastatic pediatric cancer, we found ezrin to be necessary for metastasis. By imaging metastatic cells in the lungs of mice, we showed that ezrin expression provided an early survival advantage for cancer cells that reached the lung. AKT and MAPK phosphorylation and activity were reduced when ezrin protein was suppressed. Ezrin-mediated early metastatic survival was partially dependent on activation of MAPK, but not AKT. To define the relevance of ezrin in the biology of metastasis, beyond the founding mouse model, we examined ezrin expression in dogs that naturally developed osteosarcoma. High ezrin expression in dog tumors was associated with early development of metastases. Consistent with this data, we found a significant association between high ezrin expression and poor outcome in pediatric osteosarcoma patients.


Journal of Clinical Oncology | 2006

Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer

S. B. Wedam; Jennifer A. Low; Sherry X. Yang; Catherine Chow; Peter L. Choyke; David N. Danforth; Stephen M. Hewitt; Arlene Berman; Seth M. Steinberg; David J. Liewehr; Jonathan Plehn; Arpi Doshi; Dave Thomasson; Nicole McCarthy; Hartmut Koeppen; Mark E. Sherman; JoAnne Zujewski; Kevin Camphausen; Helen Chen; Sandra M. Swain

PURPOSE Vascular endothelial growth factor (VEGF) is a potent molecule that mediates tumor angiogenesis primarily through VEGF receptor 2 (VEGFR2). Bevacizumab, a recombinant humanized monoclonal antibody to VEGF, was administered to previously untreated patients to evaluate parameters of angiogenesis. PATIENTS AND METHODS Twenty-one patients with inflammatory and locally advanced breast cancer were treated with bevacizumab for cycle 1 (15 mg/kg on day 1) followed by six cycles of bevacizumab with doxorubicin (50 mg/m(2)) and docetaxel (75 mg/m(2)) every 3 weeks. After locoregional therapy, patients received eight cycles of bevacizumab alone, and hormonal therapy when indicated. Tumor biopsies and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were obtained at baseline, and after cycles 1, 4, and 7. RESULTS A median decrease of 66.7% in phosphorylated VEGFR2 (Y951) in tumor cells (P = .004) and median increase of 128.9% in tumor apoptosis (P = .0008) were seen after bevacizumab alone. These changes persisted with the addition of chemotherapy. There were no significant changes in microvessel density or VEGF-A expression. On DCE-MRI, parameters reflecting reduced angiogenesis, a median decrease of 34.4% in the inflow transfer rate constant (P = .003), 15.0% in the backflow extravascular- extracellular rate constant (P = .0007) and 14.3% in extravascular-extracellular volume fraction (P = .002) were seen after bevacizumab alone. CONCLUSION Bevacizumab has inhibitory effects on VEGF receptor activation and vascular permeability, and induces apoptosis in tumor cells.


The American Journal of Surgical Pathology | 2002

Renal tumors in the Birt-Hogg-Dubé syndrome.

Christian P. Pavlovich; McClellan M. Walther; Robin A. Eyler; Stephen M. Hewitt; Berton Zbar; W. Marston Linehan; Maria J. Merino

Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant genodermatosis characterized by the development of small dome-shaped papules on the face, neck, and upper trunk (fibrofolliculomas). In addition to these benign hair follicle tumors, BHD confers an increased risk of renal neoplasia and spontaneous pneumothorax. To date, there has been no systematic pathologic analysis of the renal tumors associated with this syndrome. We reviewed 130 solid renal tumors resected from 30 patients with BHD in 19 different families. Preoperative computed tomography scans demonstrated a mean of 5.3 tumors per patient (range 1–28 tumors), the largest tumors averaging 5.7 cm in diameter (± 3.4 cm, range 1.2–15 cm). Multiple and bilateral tumors were noted at an early age (mean 50.7 years). The resected tumors consisted predominantly of chromophobe renal cell carcinomas (44 of 130, 34%) or of hybrid oncocytic neoplasms that had areas reminiscent of chromophobe renal cell carcinoma and oncocytoma (65 of 130, 50%). Twelve clear cell (conventional) renal carcinomas (12 of 130, 9%) were diagnosed in nine patients. These tumors were on average larger (4.7 ± 4.2 cm) than the chromophobe (3.0 ± 2.5 cm) and hybrid tumors (2.2 ± 2.4 cm). Microscopic oncocytosis was found in the renal parenchyma of most patients, including the parenchyma of five patients with evidence of clear cell renal cell carcinoma. Our findings suggest that microscopic oncocytic lesions may be precursors of hybrid oncocytic tumors, chromophobe renal cell carcinomas, and perhaps clear cell renal cell carcinomas in patients with BHD syndrome. Recognition by the pathologist of the unusual renal tumors associated with BHD may assist in the clinical diagnosis of the syndrome.


Nature Genetics | 2002

Post-analysis follow-up and validation of microarray experiments

Rodrigo F. Chuaqui; Robert F. Bonner; Carolyn J.M. Best; John W. Gillespie; Michael J. Flaig; Stephen M. Hewitt; John Phillips; David B. Krizman; Michael A. Tangrea; Mamoun Ahram; W. Marston Linehan; Vladimir Knezevic; Michael R. Emmert-Buck

Measurement of gene-expression profiles using microarray technology is becoming increasingly popular among the biomedical research community. Although there has been great progress in this field, investigators are still confronted with a difficult question after completing their experiments: how to validate the large data sets that are generated? This review summarizes current approaches to verifying global expression results, discusses the caveats that must be considered, and describes some methods that are being developed to address outstanding problems.


Nature Biotechnology | 2005

Infrared spectroscopic imaging for histopathologic recognition

Daniel C. Fernandez; Rohit Bhargava; Stephen M. Hewitt; Ira W. Levin

The process of histopathology, comprising tissue staining and morphological pattern recognition, has remained largely unchanged for over 140 years. Although it is integral to clinical and research activities, histopathologic recognition remains a time-consuming, subjective process to which only limited statistical confidence can be assigned because of inherent operator variability. Although immunohistochemical approaches allow limited molecular detection, significant challenges remain in using them for quantitative, automated pathology. Vibrational spectroscopic approaches, by contrast, directly provide nonperturbing molecular descriptors, but a practical spectroscopic protocol for histopathology is lacking. Here we couple high-throughput Fourier transform infrared (FTIR) spectroscopic imaging of tissue microarrays with statistical pattern recognition of spectra indicative of endogenous molecular composition and demonstrate histopathologic characterization of prostatic tissue. This automated histologic segmentation is applied to routine archival tissue samples, incorporates well-defined tests of statistical significance and eliminates any requirement for dyes or molecular probes. Finally, we differentiate benign from malignant prostatic epithelium by spectroscopic analyses.


Cancer Epidemiology, Biomarkers & Prevention | 2007

Differences in Risk Factors for Breast Cancer Molecular Subtypes in a Population-Based Study

Xiaohong R. Yang; Mark E. Sherman; David L. Rimm; Jolanta Lissowska; Louise A. Brinton; Beata Peplonska; Stephen M. Hewitt; William F. Anderson; Neonila Szeszenia-Dąbrowska; Alicja Bardin-Mikolajczak; Richard W. Cartun; Daniza Mandich; Grzegorz Rymkiewicz; Marcin Ligaj; Stanisław Lukaszek; Radzisaw Kordek; Montserrat Garcia-Closas

Analysis of gene expression data suggests that breast cancers are divisible into molecular subtypes which have distinct clinical features. This study evaluates whether pathologic features and etiologic associations differ among molecular subtypes. We evaluated 804 women with invasive breast cancers and 2,502 controls participating in a Polish Breast Cancer Study. Immunohistochemical stains for estrogen receptor α, progesterone receptor, human epidermal growth factor receptors (HER2 and HER1), and cytokeratin 5 were used to classify cases into five molecular subtypes: luminal A, luminal B, HER2-expresing, basal-like, and unclassified. Relative risks were estimated using adjusted odds ratios and 95% confidence intervals. We observed that compared with the predominant luminal A tumors (69%), other subtypes were associated with unfavorable clinical features at diagnosis, especially HER2-expressing (8%) and basal-like (12%) tumors. Increasing body mass index significantly reduced the risk of luminal A tumors among premenopausal women (odds ratios, 0.71; 95% confidence intervals, 0.57-0.88 per five-unit increase), whereas it did not reduce risk for basal-like tumors (1.18; 0.86-1.64; Pheterogeneity = 0.003). On the other hand, reduced risk associated with increasing age at menarche was stronger for basal-like (0.78; 0.68-0.89 per 2-year increase) than luminal A tumors (0.90; 0.95-1.08; Pheterogeneity = 0.0009). Although family history increased risk for all subtypes (except for unclassified tumors), the magnitude of the relative risk was highest for basal-like tumors. Results from this study have shown that breast cancer risk factors may vary by molecular subtypes identified in expression studies, suggesting etiologic, in addition to clinical, heterogeneity of breast cancer. (Cancer Epidemiol Biomarkers Prev 2007;16(3):439–43)


Cancer Research | 2013

Targeting Tumor-Infiltrating Macrophages Decreases Tumor-Initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses

Jonathan B. Mitchem; Donal J. Brennan; Brett L. Knolhoff; Brian Belt; Yu Zhu; Dominic E. Sanford; Larisa Belaygorod; Danielle Carpenter; Lynne Collins; David Piwnica-Worms; Stephen M. Hewitt; Girish Mallya Udupi; William M. Gallagher; Craig D. Wegner; Brian L. West; Andrea Wang-Gillam; Peter S. Goedegebuure; David C. Linehan; David G. DeNardo

Tumor-infiltrating immune cells can promote chemoresistance and metastatic spread in aggressive tumors. Consequently, the type and quality of immune responses present in the neoplastic stroma are highly predictive of patient outcome in several cancer types. In addition to host immune responses, intrinsic tumor cell activities that mimic stem cell properties have been linked to chemoresistance, metastatic dissemination, and the induction of immune suppression. Cancer stem cells are far from a static cell population; rather, their presence seems to be controlled by highly dynamic processes that are dependent on cues from the tumor stroma. However, the impact immune responses have on tumor stem cell differentiation or expansion is not well understood. In this study, we show that targeting tumor-infiltrating macrophages (TAM) and inflammatory monocytes by inhibiting either the myeloid cell receptors colony-stimulating factor-1 receptor (CSF1R) or chemokine (C-C motif) receptor 2 (CCR2) decreases the number of tumor-initiating cells (TIC) in pancreatic tumors. Targeting CCR2 or CSF1R improves chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses. Tumor-educated macrophages also directly enhanced the tumor-initiating capacity of pancreatic tumor cells by activating the transcription factor STAT3, thereby facilitating macrophage-mediated suppression of CD8(+) T lymphocytes. Together, our findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs.


American Journal of Human Genetics | 2001

Birt-Hogg-Dubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2.

Laura S. Schmidt; Michelle B. Warren; Michael L. Nickerson; Gregor Weirich; Vera Matrosova; Jorge R. Toro; Maria L. Turner; Paul H. Duray; Maria J. Merino; Stephen M. Hewitt; Christian P. Pavlovich; Gladys M. Glenn; Cheryl R. Greenberg; W. Marston Linehan; Berton Zbar

Birt-Hogg-Dubé syndrome (BHD), an inherited autosomal genodermatosis characterized by benign tumors of the hair follicle, has been associated with renal neoplasia, lung cysts, and spontaneous pneumothorax. To identify the BHD locus, we recruited families with cutaneous lesions and associated phenotypic features of the BHD syndrome. We performed a genomewide scan in one large kindred with BHD and, by linkage analysis, localized the gene locus to the pericentromeric region of chromosome 17p, with a LOD score of 4.98 at D17S740 (recombination fraction 0). Two-point linkage analysis of eight additional families with BHD produced a maximum LOD score of 16.06 at D17S2196. Haplotype analysis identified critical recombinants and defined the minimal region of nonrecombination as being within a <4-cM distance between D17S1857 and D17S805. One additional family, which had histologically proved fibrofolliculomas, did not show evidence of linkage to chromosome 17p, suggesting genetic heterogeneity for BHD. The BHD locus lies within chromosomal band 17p11.2, a genomic region that, because of the presence of low-copy-number repeat elements, is unstable and that is associated with a number of diseases. Identification of the gene for BHD may reveal a new genetic locus responsible for renal neoplasia and for lung and hair-follicle developmental defects.


Journal of The American Society of Nephrology | 2004

Discovery of Protein Biomarkers for Renal Diseases

Stephen M. Hewitt; James W. Dear; Robert A. Star

Animal models and human studies have been useful in dissecting the molecular mechanisms of renal disease and finding new disease targets; however, translation of these findings to new clinical therapeutics remains challenging. Difficulties with detecting early disease, measuring drug effectiveness, and the daunting cost of clinical trials hampers the development of new therapeutics for renal diseases. Many existing laboratory tests were discovered because of inspired recognition that a particular protein might prove useful in clinical practice. New unbiased genomic and proteomic techniques identify many constituents present in biologic samples and thus may greatly accelerate biomarker research. This review focuses on the steps needed to develop new biomarkers that are useful in laboratory and clinical investigations, with particular focus on new proteomic screening technologies. New biomarkers will speed the laboratory and clinical development of new treatments for renal diseases through mechanistic insights, diagnoses that are more refined, early detection, and enhanced proof of concept testing.


American Journal of Pathology | 2002

Evaluation of Non-Formalin Tissue Fixation for Molecular Profiling Studies

John W. Gillespie; Carolyn J.M. Best; Verena E. Bichsel; Kristina A. Cole; Susan F. Greenhut; Stephen M. Hewitt; Mamoun Ahram; Yvonne Gathright; Maria J. Merino; Robert L. Strausberg; Jonathan I. Epstein; Stanley R. Hamilton; Gallya Gannot; Galina V. Baibakova; Valerie S. Calvert; Michael J. Flaig; Rodrigo F. Chuaqui; Judi Herring; John Pfeifer; Emmanuel F. Petricoin; W. Marston Linehan; Paul H. Duray; G. Steven Bova; Michael R. Emmert-Buck

Using a general strategy for evaluating clinical tissue specimens, we found that 70% ethanol fixation and paraffin embedding is a useful method for molecular profiling studies. Human prostate and kidney were used as test tissues. The protein content of the samples was analyzed by one-dimensional gel electrophoresis, immunoblot, two-dimensional gel electrophoresis, and layered expression scanning. In each case, the fixed and embedded tissues produced results similar to that obtained from snap-frozen specimens, although the protein quantity was somewhat decreased. Recovery of mRNA was reduced in both quantity and quality in the ethanol-fixed samples, but was superior to that obtained from formalin-fixed samples and sufficient to perform reverse transcription polymerase chain reactions. Recovery of DNA from ethanol-fixed specimens was superior to formalin-fixed samples as determined by one-dimensional gel electrophoresis and polymerase chain reaction. In conclusion, specimens fixed in 70% ethanol and embedded in paraffin produce good histology and permit recovery of DNA, mRNA, and proteins sufficient for several downstream molecular analyses. Complete protocols and additional discussion of relevant issues are available on an accompanying website (http://cgap-mf.nih.gov/).

Collaboration


Dive into the Stephen M. Hewitt's collaboration.

Top Co-Authors

Avatar

Joon-Yong Chung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kris Ylaya

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark E. Sherman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise A. Brinton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikiko Takikita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge