Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen M. Robbins is active.

Publication


Featured researches published by Stephen M. Robbins.


Journal of Immunology | 2010

A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus

Florian H. Pilsczek; Davide Salina; Karen K. H. Poon; Candace Fahey; Bryan G. Yipp; Christopher D. Sibley; Stephen M. Robbins; Francis H. Y. Green; Mike G. Surette; Motoyuki Sugai; M. Gabriela Bowden; Muzaffar Hussain; Kunyan Zhang; Paul Kubes

Neutrophil extracellular traps (NETs) are webs of DNA covered with antimicrobial molecules that constitute a newly described killing mechanism in innate immune defense. Previous publications reported that NETs take up to 3–4 h to form via an oxidant-dependent event that requires lytic death of neutrophils. In this study, we describe neutrophils responding uniquely to Staphylococcus aureus via a novel process of NET formation that did not require neutrophil lysis or even breach of the plasma membrane. The multilobular nucleus rapidly became rounded and condensed. During this process, we observed the separation of the inner and outer nuclear membranes and budding of vesicles, and the separated membranes and vesicles were filled with nuclear DNA. The vesicles were extruded intact into the extracellular space where they ruptured, and the chromatin was released. This entire process occurred via a unique, very rapid (5–60 min), oxidant-independent mechanism. Mitochondrial DNA constituted very little if any of these NETs. They did have a limited amount of proteolytic activity and were able to kill S. aureus. With time, the nuclear envelope ruptured, and DNA filled the cytoplasm presumably for later lytic NET production, but this was distinct from the vesicular release mechanism. Panton–Valentine leukocidin, autolysin, and a lipase were identified in supernatants with NET-inducing activity, but Panton–Valentine leukocidin was the dominant NET inducer. We describe a new mechanism of NET release that is very rapid and contributes to trapping and killing of S. aureus.


The EMBO Journal | 2000

Ephrin‐A5 modulates cell adhesion and morphology in an integrin‐dependent manner

Alice Davy; Stephen M. Robbins

The ephrins are membrane‐tethered ligands for the Eph receptor tyrosine kinases, which play important roles in patterning of the nervous and vascular systems. It is now clear that ephrins are more than just ligands and can also act as signalling‐competent receptors, participating in bidirectional signalling. We have recently shown that ephrin‐A5 signals within caveola‐like domains of the plasma membrane upon engagement with its cognate Eph receptor, leading to increased adhesion of the cells to fibronectin. Here we show that ephrin‐A5 controls sequential biological events that are consistent with its role in neuronal guidance. Activation of ephrin‐A5 induces an initial change in cell adhesion followed by changes in cell morphology. Both effects are dependent on the activation of β1 integrin involving members of the Src family of protein tyrosine kinases. The prolonged activation of ERK‐1 and ERK‐2 is required for the change in cell morphology. Our work suggests a new role for class A ephrins in specifying the affinity of the cells towards various extracellular substrates by regulating integrin function.


Journal of Immunology | 2004

TLR4 Contributes to Disease-Inducing Mechanisms Resulting in Central Nervous System Autoimmune Disease

Steven M. Kerfoot; Elizabeth M. Long; Michael J. Hickey; Graciela Andonegui; Benoît M. Lapointe; Renata C. O. Zanardo; Claudine S. Bonder; Will G. James; Stephen M. Robbins; Paul Kubes

Environmental factors strongly influence the development of autoimmune diseases, including multiple sclerosis. Despite this clear association, the mechanisms through which environment mediates its effects on disease are poorly understood. Pertussis toxin (PTX) functions as a surrogate for environmental factors to induce animal models of autoimmunity, such as experimental autoimmune encephalomyelitis. Although very little is known about the molecular mechanisms behind its function in disease development, PTX has been hypothesized to facilitate immune cell entry to the CNS by increasing permeability across the blood-brain barrier. Using intravital microscopy of the murine cerebromicrovasculature, we demonstrate that PTX alone induces the recruitment of leukocytes and of active T cells to the CNS. P-selectin expression was induced by PTX, and leukocyte/endothelial interactions could be blocked with a P-selectin-blocking Ab. P-selectin blockade also prevented PTX-induced increase in permeability across the blood-brain barrier. Therefore, permeability is a secondary result of recruitment, rather than the primary mechanism by which PTX induces disease. Most importantly, we show that PTX induces intracellular signals through TLR4, a receptor intimately associated with innate immune mechanisms. We demonstrate that PTX-induced leukocyte recruitment is dependent on TLR4 and give evidence that the disease-inducing mechanisms initiated by PTX are also at least partly dependent on TLR4. We propose that this innate immune pathway is a novel mechanism through which environment can initiate autoimmune disease of the CNS.


Journal of Cell Science | 2006

Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER

Duncan Browman; Mary E. Resek; Laura D. Zajchowski; Stephen M. Robbins

Our laboratory was interested in characterizing the molecular composition of non-caveolar lipid rafts. Thus, we generated monoclonal antibodies to lipid raft proteins of human myelomonocytic cells. Two of these proteins, KE04p and C8orf2, were found to be highly enriched in the detergent-insoluble, buoyant fraction of sucrose gradients in a cholesterol-dependent manner. They contain an evolutionarily conserved domain placing them in the prohibitin family of proteins. In contrast to other family members, these two proteins localized to the ER. Furthermore, the extreme N-termini of KE04p and C8orf2 were found to be sufficient for heterologous targeting of GFP to the ER in the absence of classical ER retrieval motifs. We also demonstrate that all prohibitin family members rely on sequences in their extreme N-termini for their distinctive subcellular distributions including the mitochondria, plasma membrane and Golgi vesicles. Owing to their subcellular localization and their presence in lipid rafts, we have named KE04p and C8orf2, ER lipid raft protein (erlin)-1 and erlin-2, respectively. Interestingly, the ER contains relatively low levels of cholesterol and sphingolipids compared with other organelles. Thus, our data support the existence of lipid-raft-like domains within the membranes of the ER.


Journal of Biological Chemistry | 1998

Rapid Redistribution of CD20 to a Low Density Detergent-insoluble Membrane Compartment

Julie P. Deans; Stephen M. Robbins; Maria J. Polyak; Janice A. Savage

CD20 is a B cell integral membrane protein capable of initiating growth-modulating signals in human B lymphocytes upon its engagement with monoclonal anti-CD20 antibodies. In this report, we demonstrate that treatment of B cells with CD20 antibodies induces rapid redistribution of CD20 into a detergent-insoluble membrane compartment. Redistribution is detected as early as 15 s, following antibody addition, and involves up to 95% of CD20 molecules, depending on the antibody used. All of the detergent-insoluble CD20 was found in the low density fractions of sucrose density gradients, indicating that CD20 redistributes to glycolipid-rich membrane domains, analogous to caveolae in some cell types. As CD20 has previously been shown to associate with Src family tyrosine kinases, their co-existence in these compartments suggests a link to the role of CD20 in signal transduction. This study provides insight into the mechanism by which CD20 commmunicates signals to the cell interior and indicates that the search for membrane-proximal intracellular signaling partners should be directed to the Triton-insoluble fraction.


Journal of Virology | 2002

Activation of p38 and ERK Signaling during Adenovirus Vector Cell Entry Lead to Expression of the C-X-C Chemokine IP-10

Lee Anne Tibbles; Jason C. L. Spurrell; Gloria P. Bowen; Qiang Liu; Mindy Lam; Anne K. Zaiss; Stephen M. Robbins; Morley D. Hollenberg; Thomas J. Wickham; Daniel A. Muruve

ABSTRACT The use of adenovirus vectors for human gene therapy is limited by potent inflammatory responses that result in significant morbidity. In kidney-derived epithelial cells (REC), activation of extracellular signal-regulated kinase 1/2 (ERK) and p38 kinase (p38) pathways occurred within 20 min of transduction with the serotype 5 adenovirus vector AdCMVβgal. Inhibition of ERK and p38 with U0126 and SB203580, respectively, reduced the expression of IP-10 mRNA following transduction with AdCMVβgal. To determine the role of the coxsackievirus-adenovirus receptor (CAR) or αv integrins in the activation of ERK and p38 and the expression of IP-10, REC cells were transduced with the fiber-modified and RGD-deleted adenovirus vectors AdL.F(RAEK-HA) and AdL.PB(HA), respectively. Compared with the wild-type capsid vector Ad5Luc, transduction with AdL.F(RAEK-HA) and AdL.PB(HA) resulted in reduced ERK-p38 activation and less IP-10 mRNA expression. The decreased IP-10 expression induced by the tropism-modified vectors was due to diminished transduction, since increasing multiplicity of infection resulted in increased IP-10 expression. Inhibition of adenovirus penetration with bafilomycin A1 or ammonium chloride attenuated the activation of ERK-p38 and IP-10 mRNA expression following infection, suggesting that endosomal escape was required to trigger these pathways. In vivo, direct inhibition of ERK and p38 signaling pathways inhibited adenovirus vector-induced IP-10 expression in mouse liver 1 h following transduction. These results demonstrate the importance of signaling via ERK and p38 in the early host response to adenovirus vectors and will permit the development of novel strategies to improve the safety and efficacy of these agents in human gene therapy.


Circulation Research | 2004

Immune Cell Toll-Like Receptor 4 Is Required for Cardiac Myocyte Impairment During Endotoxemia

Samantha Tavener; Elizabeth M. Long; Stephen M. Robbins; Krista McRae; Holly Van Remmen; Paul Kubes

The aim of this study was to investigate the importance of Toll-like receptor 4 (TLR4) signaling on cardiac myocytes versus immune cells in lipopolysaccharide (LPS)-induced cardiac dysfunction. Cardiac myocytes isolated from LPS-treated C57Bl/6 mice showed reduced shortening and calcium transients as compared with myocytes from untreated mice. In addition, LPS-treated C57Bl/6 mice showed impaired cardiac mitochondrial function, including reduced respiration and reduced time of induction of permeability transition. All of the aforementioned cardiac dysfunction was dependent on TLR4, because LPS-treated TLR4-deficient mice did not have reduced myocyte shortening or mitochondrial dysfunction. To evaluate the role of cardiac myocyte versus leukocyte TLR4, LPS was injected into chimeric mice with TLR4-positive leukocytes and TLR4-deficient myocytes. These mice showed reduced myocyte shortening in response to LPS. Myocytes from chimeric mice with TLR4-deficient leukocytes and TLR4-positive myocytes had no response to LPS. In addition, isolated myocytes from C57Bl/6 mice subsequently treated with LPS and serum for various times did not have reduced shortening, despite the presence of TLR4 mRNA and protein, as determined by reverse-transcription polymerase chain reaction and fluorescent-activated cell sorting. In fact, cardiac myocytes had equivalent amounts of TLR4 as endothelium; however, only the latter is responsive to LPS. Furthermore, signaling pathways downstream of TLR4 were not activated during direct LPS treatment of myocytes. In conclusion, TLR4 on leukocytes, and not on cardiac myocytes, is important for cardiac myocyte impairment during endotoxemia.


Journal of Clinical Investigation | 2009

Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection

Graciela Andonegui; Hong Zhou; Daniel C. Bullard; Margaret M. Kelly; Sarah C. Mullaly; Braedon McDonald; Elizabeth M. Long; Stephen M. Robbins; Paul Kubes

Recognition of LPS by TLR4 on immune sentinel cells such as macrophages is thought to be key to the recruitment of neutrophils to sites of infection with Gram-negative bacteria. To explore whether endothelial TLR4 plays a role in this process, we engineered and imaged mice that expressed TLR4 exclusively on endothelium (known herein as EndotheliumTLR4 mice). Local administration of LPS into tissue induced comparable neutrophil recruitment in EndotheliumTLR4 and wild-type mice. Following systemic LPS or intraperitoneal E. coli administration, most neutrophils were sequestered in the lungs of wild-type mice and did not accumulate at primary sites of infection. In contrast, EndotheliumTLR4 mice showed reduced pulmonary capillary neutrophil sequestration over the first 24 hours; as a result, they mobilized neutrophils to primary sites of infection, cleared bacteria, and resisted a dose of E. coli that killed 50% of wild-type mice in the first 48 hours. In fact, the only defect we detected in EndotheliumTLR4 mice was a failure to accumulate neutrophils in the lungs following intratracheal administration of LPS; this response required TLR4 on bone marrow-derived immune cells. Therefore, endothelial TLR4 functions as the primary intravascular sentinel system for detection of bacteria, whereas bone marrow-derived immune cells are critical for pathogen detection at barrier sites. Nonendothelial TLR4 contributes to failure to accumulate neutrophils at primary infection sites in a disseminated systemic infection.


PLOS Biology | 2007

The p75 neurotrophin receptor is a central regulator of glioma invasion.

Angela L. M Johnston; Xueqing Lun; Jennifer Rahn; Abdelhamid Liacini; Limei Wang; Mark G. Hamilton; Ian F. Parney; Barbara L. Hempstead; Stephen M. Robbins; Peter A. Forsyth; Donna L. Senger

The invasive nature of cancers in general, and malignant gliomas in particular, is a major clinical problem rendering tumors incurable by conventional therapies. Using a novel invasive glioma mouse model established by serial in vivo selection, we identified the p75 neurotrophin receptor (p75NTR) as a critical regulator of glioma invasion. Through a series of functional, biochemical, and clinical studies, we found that p75NTR dramatically enhanced migration and invasion of genetically distinct glioma and frequently exhibited robust expression in highly invasive glioblastoma patient specimens. Moreover, we found that p75NTR-mediated invasion was neurotrophin dependent, resulting in the activation of downstream pathways and producing striking cytoskeletal changes of the invading cells. These results provide the first evidence for p75NTR as a major contributor to the highly invasive nature of malignant gliomas and identify a novel therapeutic target.


Nature Neuroscience | 2014

Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells

Susobhan Sarkar; Axinia Döring; Franz J. Zemp; Claudia Silva; Xueqing Lun; Xiuling Wang; John P. Kelly; Walter Hader; Mark G. Hamilton; Jeff F. Dunn; Dave Kinniburgh; Nico van Rooijen; Stephen M. Robbins; Peter A. Forsyth; Gregory Cairncross; Samuel Weiss; V. Wee Yong

Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient–derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.

Collaboration


Dive into the Stephen M. Robbins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Forsyth

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Alice Davy

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge