Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen M. Thomas is active.

Publication


Featured researches published by Stephen M. Thomas.


Nature | 2015

Mapping tree density at a global scale

Thomas W. Crowther; Henry B. Glick; Kristofer R. Covey; C. Bettigole; Daniel S. Maynard; Stephen M. Thomas; Jeffrey R. Smith; G. Hintler; Marlyse C. Duguid; Giuseppe Amatulli; Mao-Ning Tuanmu; Walter Jetz; Christian Salas; C. Stam; Daniel Piotto; R. Tavani; S. Green; G. Bruce; S. J. Williams; Susan K. Wiser; M. O. Huber; Geerten M. Hengeveld; Gert-Jan Nabuurs; E. Tikhonova; P. Borchardt; Ching-Feng Li; L. W. Powrie; Markus Fischer; Andreas Hemp; Jürgen Homeier

The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.30 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.66 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.


Microbes and Infection | 2008

The antibacterial activity against MRSA strains and other bacteria of a <500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae).

Alyson Bexfield; A. Elizabeth Bond; Emily C. Roberts; Edward G. Dudley; Yamni Nigam; Stephen M. Thomas; Russell P. Newton; Norman A. Ratcliffe

The application of Lucilia sericata larvae to chronic, infected wounds results in the rapid elimination of infecting microorganisms, including MRSA. Previously, we demonstrated in vitro antibacterial activity of native excretions/secretions (nES) from L. sericata and partially purified two low mass antibacterial compounds with masses of 0.5-10kDa and <500Da. The present study reports the antibacterial effects of the <500Da fraction (ES<500) on the growth and morphology of a range of bacteria, including 12 MRSA strains. Distinct morphological changes were observed in Bacillus cereus and Escherichia coli following exposure to ES<500. Flow cytometry and confocal microscopy analyses, in conjunction with turbidometric and CFU assays, revealed bacteriostatic activity of nES against S. aureus and E. coli. ES<500 also demonstrated bacteriostatic activity against S. aureus, however, bactericidal activity and the induction of a viable but non-culturable state were observed with ES<500-treated E. coli.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Biotic interactions mediate soil microbial feedbacks to climate change

Thomas W. Crowther; Stephen M. Thomas; Daniel S. Maynard; Petr Baldrian; Kristofer R. Covey; Serita D. Frey; Linda T. A. van Diepen; Mark A. Bradford

Significance The land carbon–climate feedback is incorporated into the earth system models that inform current Intergovernmental Panel on Climate Change projections. This feedback is driven by increases in soil microbial decomposition and carbon loss from soils under global change scenarios. The present study shows how trophic interactions in soil can mediate microbial responses to combined global change factors. As soil nitrogen deposition increases, the limitations on fungal growth are alleviated, stimulating total enzyme activity and decomposition rates. However, this process also affects the grazing activity of soil invertebrates. In the absence of nutrient limitation, top-down control by grazing isopods emerges as a dominant control, limiting any increases in fungal activity and carbon cycling. Decomposition of organic material by soil microbes generates an annual global release of 50–75 Pg carbon to the atmosphere, ∼7.5–9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle–climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle–climate feedbacks.


Journal of Animal Ecology | 2015

Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data

Stephen M. Thomas; Thomas W. Crowther

The stable isotopes of carbon ((12)C, (13)C) and nitrogen ((14)N, (15)N) represent powerful tools in food web ecology, providing a wide range of dietary information in animal consumers. However, identifying the temporal window over which a consumers isotopic signature reflects its diet requires an understanding of elemental incorporation, a process that varies from days to years across species and tissue types. Though theory predicts body size and temperature are likely to control incorporation rates, this has not been tested empirically across a morphologically and phylogenetically diverse range of taxa. Readily available estimates of this relationship would, however, aid in the design of stable isotope food web investigations and improve the interpretation of isotopic data collected from natural systems. Using literature-derived turnover estimates from animal species ranging in size from 1 mg to 2000 kg, we develop a predictive tool for stable isotope ecologists, allowing for estimation of incorporation rates in the structural tissues of entirely novel taxa. In keeping with metabolic scaling theory, we show that isotopic turnover rates of carbon and nitrogen in whole organisms and muscle tissue scale allometrically with body mass raised approximately to the power -0.19, an effect modulated by body temperature. This relationship did not, however, apply to incorporation rates in splanchnic tissues, which were instead dependent on the thermoregulation tactic employed by an organism, being considerably faster in endotherms than ectotherms. We believe the predictive turnover equations we provide can improve the design of experiments and interpretation of results obtained in future stable isotopic food web studies.


PLOS ONE | 2014

Effects of elevated CO2 on litter chemistry and subsequent invertebrate detritivore feeding responses

Matthew Dray; Thomas W. Crowther; Stephen M. Thomas; A. Donald A’Bear; Douglas L. Godbold; S.J. Ormerod; Susan E. Hartley; T. Hefin Jones

Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder) or Betula pendula (silver birch) trees propagated under ambient (380 ppm) or elevated (ambient +200 ppm) CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i) two litter discs, one of each CO2 treatment (‘choice’), or (ii) one litter disc of each CO2 treatment alone (‘no-choice’). Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. Species’ responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2 treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing–a key ecosystem function–under atmospheric change.


PLOS ONE | 2013

Evaluation of In Vitro Cross-Reactivity to Avian H5N1 and Pandemic H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial

Delia Bethell; David Saunders; Anan Jongkaewwattana; Jarin Kramyu; Arunee Thitithayanont; Suwimon Wiboon-ut; Kosol Yongvanitchit; Amporn Limsalakpetch; Utaiwan Kum-Arb; Nichapat Uthaimongkol; Jean Michel Garcia; Ans Timmermans; Malik Peiris; Stephen M. Thomas; Anneke Engering; Richard G. Jarman; Duangrat Mongkolsirichaikul; Carl J. Mason; Nuanpan Khemnu; Stuart D. Tyner; Mark M. Fukuda; Douglas S. Walsh; Sathit Pichyangkul

Introduction Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses. Methods In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1) weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1), and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose. Results Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI) and neutralization (NT) titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI) assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated. Conclusion Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of administering single dose trivalent seasonal influenza vaccine at the outset of an influenza pandemic while a specific vaccine is being developed. Trial Registration ClinicalTrials.gov NCT01044095


Scientific Reports | 2017

Ecological speciation in a generalist consumer expands the trophic niche of a dominant predator

Stephen M. Thomas; Chris Harrod; Brian Hayden; Tommi Malinen; Kimmo K. Kahilainen

Ecological speciation – whereby an ancestral founder species diversifies to fill vacant niches – is a phenomenon characteristic of newly formed ecosystems. Despite such ubiquity, ecosystem-level effects of such divergence remain poorly understood. Here, we compared the trophic niche of European whitefish (Coregonus lavaretus) and their predators in a series of contrasting subarctic lakes where this species had either diversified into four ecomorphologically distinct morphs or instead formed monomorphic populations. We found that the trophic niche of whitefish was almost three times larger in the polymorphic than in the monomorphic lakes, due to an increase in intraspecific specialisation. This trophic niche expansion was mirrored in brown trout (Salmo trutta), a major predator of whitefish. This represents amongst the first evidence for ecological speciation directly altering the trophic niche of a predator. We suggest such mechanisms may be a common and important – though presently overlooked – factor regulating trophic interactions in diverse ecosystems globally.


Science of The Total Environment | 2017

Ecomorphological divergence drives differential mercury bioaccumulation in polymorphic European whitefish (Coregonus lavaretus) populations of subarctic lakes

Kimmo K. Kahilainen; Stephen M. Thomas; Elina K.M. Nystedt; Ossi Keva; Tommi Malinen; Brian Hayden

Resource polymorphism, whereby ancestral trophic generalists undergo divergence into multiple specialist morphs, is common in salmonid fish populations inhabiting subarctic lakes. However, the extent to which such resource specialization into the three principal lake habitats (littoral, profundal, and pelagic) affects patterns of contaminant bioaccumulation remains largely unexplored. We assessed total mercury concentrations (THg) of European whitefish (Coregonus lavaretus (L.)) and their invertebrate prey in relation to potential explanatory variables across 6 subarctic lakes, of which three are inhabited by polymorphic (comprised of four morphs) and three by monomorphic populations. Among invertebrate prey, the highest THg concentrations were observed in profundal benthic macroinvertebrates, followed by pelagic zooplankton, with concentrations lowest in littoral benthic macroinvertebrates in both lake types. Broadly similar patterns were apparent in whitefish in polymorphic systems, where average age-corrected THg concentrations and bioaccumulation rates were the highest in pelagic morphs, intermediate in the profundal morph, and the lowest in the littoral morph. In monomorphic systems, age-corrected THg concentrations were generally lower, and showed pronounced lake-specific variation. In the polymorphic systems, we found significant relationships between whitefish muscle tissue THg concentration and gill raker count, resource use, lipid content and maximum length, whilst no such relationships were apparent in the monomorphic systems. Across all polymorphic lakes, the major variables explaining THg in whitefish were gill raker count and age, whereas in monomorphic systems, the factors were lake-specific. Whitefish resource polymorphism across the three main lake habitats therefore appears to have profound impacts on THg concentration and bioaccumulation rate. This highlights the importance of recognizing such intraspecific diversity in both future scientific studies and mercury monitoring programs.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Reply to Veresoglou: Overdependence on “significance” testing in biology

Thomas W. Crowther; Daniel S. Maynard; Stephen M. Thomas; Petr Baldrian; Kristofer R. Covey; Serita D. Frey; Linda T. A. van Diepen; Mark A. Bradford

In PNAS, we explore the effects of interacting global change factors on the functioning of decomposer communities and show how biotic interactions influence the strength of soil carbon feedbacks to climate change (1). Veresoglou (2) highlights that the highly interactive nature of our multifactor experiment can increase the likelihood of type I errors (i.e., “false positives”), an effect that he refers to as “P hacking.” We appreciate this perspective because it provides a platform to discuss what we believe is a critical topic in biology: an overdependence on significant P values.


Innovations in Education and Training International | 1974

Programmed Instruction with Pre-School Children: An Appraisal.

Michael J. Apter; David R. Boorer; Stephen M. Thomas

Abstract This paper surveys research which has been done on, or is relevant to, the use of programmed instruction with pre‐school children. This includes work on operant conditioning in young children and also work on programmed instruction in special education with children of mental age of less than five, as well as experiments which have been carried out using something like typical programmed materials with normal children of chronological age less than five. The paper also describes the various pieces of audio‐visual equipment which are currently available in the United Kingdom and which can be used to present programs to pre‐school children. It concludes that there is more scope for the development of programmed instruction at the pre‐school level than had perhaps been previously generally realised, especially since expense need not be prohibitive, but that research may be needed to check that there are no long‐term undesirable side‐effects.

Collaboration


Dive into the Stephen M. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Hayden

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge