Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen N. Rudnick is active.

Publication


Featured researches published by Stephen N. Rudnick.


Applied and Environmental Microbiology | 2010

Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures.

James McDevitt; Stephen N. Rudnick; Melvin W. First; John D. Spengler

ABSTRACT Influenza virus has been found to persist in the environment for hours to days, allowing for secondary transmission of influenza via inanimate objects known as fomites. We evaluated the efficacy of heat and moisture for the decontamination of surfaces for the purpose of preventing of the spread of influenza. Aqueous suspensions of influenza A virus were deposited onto stainless steel coupons, allowed to dry under ambient conditions, and exposed to temperatures of 55°C, 60°C, or 65°C and relative humidity (RH) of 25%, 50%, or 75% for up to 1 h. Quantitative virus assays were performed on the solution used to wash the viruses from these coupons, and results were compared with the solution used to wash coupons treated similarly but left under ambient conditions. Inactivation of influenza virus on surfaces increased with increasing temperature, RH, and exposure time. Reductions of greater than 5 logs of influenza virus on surfaces were achieved at temperatures of 60 and 65°C, exposure times of 30 and 60 min, and RH of 50 and 75%. Our data also suggest that absolute humidity is a better predictor of surface inactivation than RH and allows the prediction of survival using two parameters rather than three. Modest amounts of heat and adequate moisture can provide effective disinfection of surfaces while not harming surfaces, electrical systems, or mechanical components, leaving no harmful residues behind after treatment and requiring a relatively short amount of time.


BMC Public Health | 2003

Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay

Theodore A. Myatt; Sebastian L. Johnston; Stephen N. Rudnick; Donald K. Milton

BackgroundRhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission, we developed methods to detect aerosolized rhinovirus by extending existing technology for detecting infectious agents in nasal specimens.MethodsWe aerosolized rhinovirus in a small aerosol chamber. Experiments were conducted with decreasing concentrations of rhinovirus. To determine the effect of UV irradiation on detection of rhinoviral aerosols, we also conducted experiments in which we exposed aerosols to a UV dose of 684 mJ/m2. Aerosols were collected on Teflon filters and rhinovirus recovered in Qiagen AVL buffer using the Qiagen QIAamp Viral RNA Kit (Qiagen Corp., Valencia, California) followed by semi-nested RT-PCR and detection by gel electrophoresis.ResultsWe obtained positive results from filter samples that had collected at least 1.3 TCID50 of aerosolized rhinovirus. Ultraviolet irradiation of airborne virus at doses much greater than those used in upper-room UV germicidal irradiation applications did not inhibit subsequent detection with the RT-PCR assay.ConclusionThe air sampling and extraction methodology developed in this study should be applicable to the detection of rhinovirus and other airborne viruses in the indoor air of offices and schools. This method, however, cannot distinguish UV inactivated virus from infectious viral particles.


Applied and Environmental Microbiology | 2007

Characterization of UVC Light Sensitivity of Vaccinia Virus

James McDevitt; Ka Man Lai; Stephen N. Rudnick; E. Andres Houseman; Melvin W. First; Donald K. Milton

ABSTRACT Interest in airborne smallpox transmission has been renewed because of concerns regarding the potential use of smallpox virus as a biothreat agent. Air disinfection via upper-room 254-nm germicidal UV (UVC) light in public buildings may reduce the impact of primary agent releases, prevent secondary airborne transmission, and be effective prior to the time when public health authorities are aware of a smallpox outbreak. We characterized the susceptibility of vaccinia virus aerosols, as a surrogate for smallpox, to UVC light by using a benchtop, one-pass aerosol chamber. We evaluated virus susceptibility to UVC doses ranging from 0.1 to 3.2 J/m2, three relative humidity (RH) levels (20%, 60%, and 80%), and suspensions of virus in either water or synthetic respiratory fluid. Dose-response plots show that vaccinia virus susceptibility increased with decreasing RH. These plots also show a significant nonlinear component and a poor fit when using a first-order decay model but show a reasonable fit when we assume that virus susceptibility follows a log-normal distribution. The overall effects of RH (P < 0.0001) and the suspending medium (P = 0.014) were statistically significant. When controlling for the suspending medium, the RH remained a significant factor (P < 0.0001) and the effect of the suspending medium was significant overall (P < 0.0001) after controlling for RH. Virus susceptibility did not appear to be a function of virus particle size. This work provides an essential scientific basis for the design of effective upper-room UVC installations for the prevention of airborne infection transmission of smallpox virus by characterizing the susceptibility of an important orthopoxvirus to UVC exposure.


Journal of Occupational and Environmental Hygiene | 2007

Fundamental Factors Affecting Upper-Room Ultraviolet Germicidal Irradiation—Part I. Experimental

Melvin W. First; Stephen N. Rudnick; Kevin F. Banahan; Richard L. Vincent; Phillip W. Brickner

The objective of this research was to study the factors that relate to the effectiveness of upper-room ultraviolet germicidal irradiation for inactivating airborne microorganisms. The work was conducted in a room-sized chamber designed and furnished for investigations of this nature. Nebulized Serratia marcescens, Bacillus subtilis spores, and vaccinia virus were used as test aerosols. Most data were collected from steady-state experiments comparing the number of viable organisms in the chamber air remaining with UV lamps turned on to the number with UV lamps turned off, but some decay experiments were conducted to compare the two methods. UV power level had a strong influence but was fully effective only in the presence of air mixing that produced vigorous vertical air currents. A conclusion of the study is that an upper-room ultraviolet installation is a complex system that requires careful integration of UV luminaires, UV power, and room ventilation arrangements.


Journal of The Air & Waste Management Association | 1989

Particulate and Nicotine Sampling in Public Facilities and Offices

Elizabeth A. Miesner; Stephen N. Rudnick; Fu-Chang Hu; John D. Spengler; Liesbeth Preller; Halûk Özkaynak; William C. Nelson

The purpose of this study was to characterize and measure indoor air quality in public facilities and office buildings. The pollutants of interest were particulate matter smaller than 2.5 microns in diameter, PM-2.5, and environmental tobacco smoke (ETS). Integrated PM-2.5 samples were taken on Teflon membrane filters using Harvard Aerosol Impactors as a pre-size selector. Filters were analyzed by gravimetric analysis. Nicotine, which was used as a marker for ETS, was collected on sodium-bisulfate-impregnanted, glass-fiber filters and was analyzed by gas chromatography. Twenty-one structures were monitored in Metropolitan Boston. Measured particle concentrations ranged from 6.0 micrograms/m3 to about 550 micrograms/m3. Nicotine concentrations were as high as 26 micrograms/m3 in a designated smoking room. Real-time measurements were also taken using two types of nephelometers; a Handheld Aerosol Monitor (HAM) and a Miniature Real-Time Aerosol Monitor (MINIRAM). Short-term field measurements with these instruments correlated better with the integrated PM-2.5 concentrations in smoking locations than with concentrations in non-smoking areas.


Journal of Occupational and Environmental Hygiene | 2007

Fundamental factors affecting upper-room ultraviolet germicidal irradiation - part II. Predicting effectiveness.

Stephen N. Rudnick; Melvin W. First

Compared with increasing outdoor air ventilation rate, upper-room ultraviolet germicidal irradiation (UVGI) is an attractive technology for lowering the indoor concentration of airborne microorganisms and thereby reducing the risk of airborne transmission of disease. With relatively modest vertical air circulation, most of the air in a room can be irradiated in a relatively brief time period without noise or significant power consumption. The hypothesis tested in this study is that the efficacy of upper-room UVGI to inactivate or kill airborne infectious microorganisms can be determined from an index of UVGI effectiveness, a dimensionless parameter designed to characterize adequacy of vertical air circulation, amount of UVGI provided, and their interaction. This index of effectiveness, which is determined independently of microbiological testing, was found to correlate well with experimental measurements made in a room-size chamber. A comparison of two other dimensionless parameters—the irradiation number and mixing number, from which effectiveness index is calculated—provides insight into whether the quantity of UV provided to the upper room or the intensity of the vertical air circulation is the controlling factor for effective application of upper-room UVGI. The irradiation number is calculated from the UV power output of the fixture(s), a parameter that is fixture specific and much easier to measure than mean fluence rate. An equation was also developed that relates UV fixture power output to mean fluence rate in either the irradiated zone or the entire room. In addition, reductions in viable microorganism concentration due to UVGI predicted from a two-box model are compared with experimental measurements.


PLOS ONE | 2008

Inactivation of Poxviruses by Upper-Room UVC Light in a Simulated Hospital Room Environment

James McDevitt; Donald K. Milton; Stephen N. Rudnick; Melvin W. First

In the event of a smallpox outbreak due to bioterrorism, delays in vaccination programs may lead to significant secondary transmission. In the early phases of such an outbreak, transmission of smallpox will take place especially in locations where infected persons may congregate, such as hospital emergency rooms. Air disinfection using upper-room 254 nm (UVC) light can lower the airborne concentrations of infective viruses in the lower part of the room, and thereby control the spread of airborne infections among room occupants without exposing occupants to a significant amount of UVC. Using vaccinia virus aerosols as a surrogate for smallpox we report on the effectiveness of air disinfection, via upper-room UVC light, under simulated real world conditions including the effects of convection, mechanical mixing, temperature and relative humidity. In decay experiments, upper-room UVC fixtures used with mixing by a conventional ceiling fan produced decreases in airborne virus concentrations that would require additional ventilation of more than 87 air changes per hour. Under steady state conditions the effective air changes per hour associated with upper-room UVC ranged from 18 to 1000. The surprisingly high end of the observed range resulted from the extreme susceptibility of vaccinia virus to UVC at low relative humidity and use of 4 UVC fixtures in a small room with efficient air mixing. Increasing the number of UVC fixtures or mechanical ventilation rates resulted in greater fractional reduction in virus aerosol and UVC effectiveness was higher in winter compared to summer for each scenario tested. These data demonstrate that upper-room UVC has the potential to greatly reduce exposure to susceptible viral aerosols. The greater survival at baseline and greater UVC susceptibility of vaccinia under winter conditions suggest that while risk from an aerosol attack with smallpox would be greatest in winter, protective measures using UVC may also be most efficient at this time. These data may also be relevant to influenza, which also has improved aerosol survival at low RH and somewhat similar sensitivity to UVC.


American Journal of Infection Control | 2009

Inactivating influenza viruses on surfaces using hydrogen peroxide or triethylene glycol at low vapor concentrations

Stephen N. Rudnick; James McDevitt; Melvin W. First; John D. Spengler

Background Surfaces in congregate settings, such as vehicles used for mass transportation, can become contaminated with infectious microorganisms and facilitate disease transmission. We disinfected surfaces contaminated with H1N1 influenza viruses using hydrogen peroxide (HP) vapor at concentrations below 100 ppm and triethylene glycol (TEG)-saturated air containing 2 ppm of TEG at 25°C. Methods Influenza viruses in aqueous suspensions were deposited on stainless-steel coupons, allowed to dry at ambient conditions, and then exposed for up to 15 minutes to 10 to 90 ppm of HP vapor or TEG-saturated air. Virus assays were done on the solution used to wash the viruses from these coupons and from coupons treated similarly but without exposure to HP or TEG vapor. Results After 2.5 minutes, exposure to 10-ppm HP vapor resulted in 99% inactivation. For air saturated with TEG at 25 to 29°C, the disinfection rate was about 1.3 log10 reductions per hour, about 16 times faster than the measured natural inactivation rate under ambient conditions. Conclusions Vapor concentrations of 10 ppm HP or 2 ppm TEG can provide effective surface disinfection. At these low concentrations, the potential for damage to even the avionics of an airplane would be expected to be minimal. At a TEG vapor concentration of 2 ppm, there are essentially no health risks to people.


Environmental Health | 2002

A Study of Indoor Carbon Dioxide Levels and Sick Leave among Office Workers

Theodore A. Myatt; John Staudenmayer; Kate Adams; Michael D. Walters; Stephen N. Rudnick; Donald K. Milton

BackgroundA previous observational study detected a strong positive relationship between sick leave absences and carbon dioxide (CO2) concentrations in office buildings in the Boston area. The authors speculated that the observed association was due to a causal effect associated with low dilution ventilation, perhaps increased airborne transmission of respiratory infections. This study was undertaken to explore this association.MethodsWe conducted an intervention study of indoor CO2 levels and sick leave among hourly office workers employed by a large corporation. Outdoor air supply rates were adjusted periodically to increase the range of CO2 concentrations. We recorded indoor CO2 concentrations every 10 minutes and calculated a CO2 concentration differential as a measure of outdoor air supply per person by subtracting the 1–3 a.m. average CO2 concentration from the same-day 9 a.m. – 5 a.m. average concentration. The metric of CO2 differential was used as a surrogate for the concentration of exhaled breath and for potential exposure to human source airborne respiratory pathogens.ResultsThe weekly mean, workday, CO2 concentration differential ranged from 37 to 250 ppm with a peak CO2 concentration above background of 312 ppm as compared with the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) recommended maximum differential of 700 ppm. We determined the frequency of sick leave among 294 hourly workers scheduled to work approximately 49,804.2 days in the study areas using company records. We found no association between sick leave and CO2 differentialConclusionsThe CO2 differential was in the range of very low values, as compared with the ASHRAE recommended maximum differential of 700 ppm. Although no effect was found, this study was unable to test whether higher CO2 differentials may be associated with increased sick leave.


Environmental Science & Technology | 1986

Particle Collection Efficiency in a Venturi Scrubber: Comparison of Experiments with Theory

Stephen N. Rudnick; John. Koehler; Kenneth P. Martin; David Leith; Douglas W. Cooper

Mesure de la performance pour des particules dont le diametre varie de 0,32 a 2,8 μm. Comparaison avec les previsions de trois modeles theoriques

Collaboration


Dive into the Stephen N. Rudnick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward A. Nardell

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard L. Vincent

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip W. Brickner

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Leith

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge