Stephen P. Hegarty
Cork Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen P. Hegarty.
Optics Letters | 2004
D. O’Brien; Stephen P. Hegarty; Guillaume Huyet; Alexander V. Uskov
The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.
Optics Letters | 2010
Thomas Erneux; Evgeny Viktorov; Bryan Kelleher; David Goulding; Stephen P. Hegarty; Guillaume Huyet
The response of an optically injected quantum-dot semiconductor laser (SL) is studied both experimentally and theoretically. In particular, the nature of the locking boundaries is investigated, revealing features more commonly associated with Class A lasers rather than conventional Class B SLs. Experimentally, two features stand out; the first is an absence of instabilities resulting from relaxation oscillations, and the second is the observation of a region of bistability between two locked solutions. Using rate equations appropriate for quantum-dot lasers, we analytically determine the stability diagram in terms of the injection rate and frequency detuning. Of particular interest are the Hopf and saddle-node locking boundaries that explain how the experimentally observed phenomena appear.
IEEE Photonics Technology Letters | 2010
Tatiana Habruseva; Shane O'Donoghue; Natalia Rebrova; Douglas A. Reid; Liam P. Barry; Dmitrii Rachinskii; Guillaume Huyet; Stephen P. Hegarty
Quantum-dot mode-locked lasers are injection-locked by coherent two-tone master sources. Spectral tuning, significantly improved time-bandwidth product, and low jitter are demonstrated without deterioration of the pulse properties.
Optics Letters | 2009
Bryan Kelleher; David Goulding; Stephen P. Hegarty; Guillaume Huyet; Ding-Yi Cong; Anthony Martinez; A. Lemaître; A. Ramdane; M. Fischer; F. Gerschütz; J. Koeth
An experimental study of the dynamics of a single-mode quantum-dot semiconductor laser undergoing optical injection is described for the first time, to our knowledge. In particular, the first observation of excitable pulses near the locking boundaries for both positive and negative detuning is reported, indicating locking via a saddle-node bifurcation for both signs of the detuning. The phase evolution of the slave electric-field during pulsing was measured and confirmed that the pulses result from 2pi phase slips. The interpulse-time statistics were analyzed, and a Kramers-like distribution was obtained.
Optics Express | 2013
Svetlana Slepneva; Bryan Kelleher; B. O’Shaughnessy; Stephen P. Hegarty; A.G. Vladimirov; Guillaume Huyet
We analyze the dynamics of Fourier Domain Mode Locked lasers and show that the frequency-sweep asymmetry in the output originates from inherent field-matter nonlinearities, resulting in two regions: chaos and mode group stepping.
Optics Letters | 2006
Maria Teresa Todaro; Jean-Philippe Tourrenc; Stephen P. Hegarty; Carmel Kelleher; Brian Corbett; Guillaume Huyet; John G. McInerney
We have analyzed pulse width and timing jitter in passively mode-locked two-section InAs quantum-dot lasers emitting at 1310 nm and have identified two distinct, extensive mode-locked regions with robust short pulses and low timing jitter. A record combination of 2 ps pulses and 25 fs/cycle timing jitter (500 fs, 1-100 MHz), with 1 mW average output power per facet, is demonstrated.
Journal of The Optical Society of America B-optical Physics | 1999
Stephen P. Hegarty; Guillaume Huyet; Pierpaolo A. Porta; John G. McInerney; Kent D. Choquette; Kent M. Geib; H. Q. Hou
We analyze the transverse profiles of oxide-confined vertical-cavity laser diodes as a function of aperture size. For small apertures we demonstrate that thermal lensing can be the dominant effect in determining the transverse resonator properties. We also analyze pattern formation in lasers with large apertures where we observe the appearance of tilted waves.
Optics Express | 2007
S. Azouigui; Bryan Kelleher; Stephen P. Hegarty; Guillaume Huyet; B. Dagens; F. Lelarge; A. Accard; D. Make; O. Le Gouezigou; Kamel Merghem; A. Martinez; Qin Zou; A. Ramdane
Optical feedback tolerance is experimentally investigated on a 600-mum-long quantum-dash based Fabry-Pérot laser emitting at 1.57mum. While quantum-dashes are structurally intermediate to quantum-wells and quantum-dots, the observed behaviour is distinctly like that of a quantum-well based laser but with greater stability. Coherence collapse and low-frequency fluctuation regimes are observed and are reported here. The onset of the coherence collapse regime is experimentally determined and is found to vary from -29 dB to -21 dB external feedback level when increasing the current from twice to nine times the threshold current.
IEEE Photonics Technology Letters | 2011
Ehsan Sooudi; Guillaume Huyet; John G. McInerney; F. Lelarge; Kamel Merghem; Ricardo Rosales; Anthony Martinez; A. Ramdane; Stephen P. Hegarty
We report optical injection-locking in 21-GHz single-section and two-section InAs/InP 1.5-μm quantum-dash mode-locked lasers. Two distinct mode-locked regimes were observed and successfully locked to the optically injected light. The single-section laser only operates as a self-mode-locked laser while the two-section laser could operate as both a self-mode-locked laser and saturable-absorber dominated mode-locked laser. The continuous-wave (CW) injection-locked self-mode-locked laser shows wide tuning of the mode-locked frequency (≈270 MHz) within the locking range. The CW injection-locked saturable-absorber dominated mode-locked laser demonstrates wide optical spectrum, and 5.5 × reduction in the time-bandwidth product of the pulses. Using dual-mode injection, strong reduction of timing jitter ( ≈235 fs) is possible leading to the generation of a wide coherent frequency comb. Coherence between all the modes and the master laser is confirmed by measuring the RF beat note of each mode with a narrow linewidth laser.
Applied Physics Letters | 2014
Tatiana Habruseva; D. Arsenijević; M. Kleinert; D. Bimberg; Guillaume Huyet; Stephen P. Hegarty
Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively.