Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen P. Reynolds is active.

Publication


Featured researches published by Stephen P. Reynolds.


The Astrophysical Journal | 2013

The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission

Fiona A. Harrison; William W. Craig; Finn Erland Christensen; Charles J. Hailey; William W. Zhang; Steven E. Boggs; Daniel Stern; W. Rick Cook; Karl Forster; Paolo Giommi; Brian W. Grefenstette; Yunjin Kim; Takao Kitaguchi; Jason E. Koglin; Kristin K. Madsen; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff; S. Puccetti; V. Rana; Niels Jørgen Stenfeldt Westergaard; Jason Willis; Andreas Zoglauer; Hongjun An; Matteo Bachetti; Eric C. Bellm; Varun Bhalerao; Nicolai F. Brejnholt

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporations LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.


The Astrophysical Journal | 2001

Supernova Remnants in the Sedov Expansion Phase: Thermal X-Ray Emission

Kazimierz J. Borkowski; William J. Lyerly; Stephen P. Reynolds

Improved calculations of X-ray spectra for supernova remnants (SNRs) in the Sedov-Taylor phase are reported, which for the first time include reliable atomic data for Fe L-shell lines. This new set of Sedov models also allows for a partial collisionless heating of electrons at the blast wave and for energy transfer from ions to electrons through Coulomb collisions. X-ray emission calculations are based on the updated Hamilton-Sarazin spectral model. The calculated X-ray spectra are successfully interpreted in terms of three distribution functions: the electron temperature and ionization timescale distributions, and the ionization timescale-averaged electron temperature distribution. The comparison of Sedov models with a frequently used single nonequilibrium ionization (NEI) timescale model reveals that this simple model is generally not an appropriate approximation to X-ray spectra of SNRs. We find instead that plane-parallel shocks provide a useful approximation to X-ray spectra of SNRs, particularly for young SNRs. Sedov X-ray models described here, together with simpler plane shock and single-ionization timescale models, have been implemented as standard models in the widely used XSPEC v11 spectral software package.


The Astrophysical Journal | 1998

Models of Synchrotron X-Rays from Shell Supernova Remnants

Stephen P. Reynolds

The diffusive shock acceleration process can accelerate particles to a maximum energy depending on the shock speed and age and on any competing loss processes on the particles. The shock waves of young supernova remnants can easily accelerate electrons to energies in excess of 1 TeV, where they can produce X-rays by the synchrotron process. I describe a detailed calculation of the morphology and spectrum of synchrotron X-rays from supernova remnants. Remnants are assumed to be spherical and in the Sedov evolutionary phase, though the results are insensitive to the detailed dynamics. The upstream magnetic field is assumed uniform; downstream it is assumed to be compressed but not additionally turbulently amplified. In all cases, spectra begin to depart from power laws somewhere in the optical to UV range and roll off smoothly through the X-ray band. I show that simple approximations for the electron emissivity are not adequate; a full convolution of the individual electron synchrotron emissivity with a calculated electron distribution at each point in the remnant is required. Models limited by the finite shock age, by synchrotron or inverse Compton losses on electrons, or by escape of electrons above some energy have characteristically different spectral shapes, but within each class, models resemble one another strongly and can be related by simple scalings. The images and spectra depend primarily on the remnant age, the upstream magnetic field strength, and the level of magnetic turbulence near the shock in which the electrons scatter. In addition, images depend on the viewing or aspect angle between the upstream magnetic field and the line of sight. The diffusion coefficient is assumed to be proportional to particle energy (or mean free path proportional to gyroradius), but I investigate the possibility that the proportionality constant becomes much larger above some energy, corresponding to an absence of long-wavelength MHD waves. Models producing similar spectra may differ significantly in morphology, which allows for possible discriminations. I parameterize the model spectra in terms of a slope at 4 keV and a factor by which the X-ray flux density at that energy falls below the extrapolated radio spectrum. Synchrotron radiation may contribute significantly to the X-ray emission of remnants up to several thousand years old.


The Astrophysical Journal | 1998

Transition to the Radiative Phase in Supernova Remnants

John M. Blondin; Eric B. Wright; Kazimierz J. Borkowski; Stephen P. Reynolds

The evolution of a supernova remnant through the transition from an adiabatic Sedov-Taylor blast wave to a radiative pressure-driven snowplow phase is studied using one- and two-dimensional hydrodynamic simulations. This transition is marked by a catastrophic collapse of the postshock gas, forming a thin, dense shell behind the forward shock. After the transition, the shock front is characterized by a deceleration parameter, Vt/R ≈ 0.33, which is considerably higher than the analytic estimate of for a pressure-driven snowplow. In two dimensions, the catastrophic collapse is accompanied by violent dynamical instabilities of the thin, cool shell. The violence of the collapse and the subsequent instability of the shell increase with increasing ambient density. Preshock density perturbations as small as 1% in an ambient medium with density of 100 cm-3 can lead to distortions of the shock front larger than 10% of the radius of the remnant.


The Astrophysical Journal | 1999

Maximum Energies of Shock-accelerated Electrons in Young Shell Supernova Remnants

Stephen P. Reynolds; Jonathan W. Keohane

Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic-ray spectrum at around 1000 TeV, known as the knee. We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on Emax, the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on Emax by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible Emax consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 μG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on Emax above 100 TeV. All the other remnants have limits at or below 80 TeV. Emax is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of Emax in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.


The Astrophysical Journal | 1999

Radio to Gamma-Ray Emission from Shell-Type Supernova Remnants: Predictions from Nonlinear Shock Acceleration Models

Matthew G. Baring; Donald C. Ellison; Stephen P. Reynolds; Isabelle A. Grenier; P. Goret

Supernova remnants (SNRs) are widely believed to be the principal source of Galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnants expanding blast wave. Such energetic particles can produce gamma rays and lower energy photons via interactions with the ambient plasma. The recently reported observation of TeV gamma rays from SN 1006 by the Collaboration of Australia and Nippon for a Gamma-Ray Observatory in the Outback (CANGAROO), combined with the fact that several unidentified EGRET sources have been associated with known radio/optical/X-ray-emitting remnants, provides powerful motivation for studying gamma-ray emission from SNRs. In this paper, we present results from a Monte Carlo simulation of nonlinear shock structure and acceleration coupled with photon emission in shelllike SNRs. These nonlinearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays that deviate from pure power laws. Such deviations are crucial to acceleration efficiency considerations and impact photon intensities and spectral shapes at all energies, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion (proton and helium) and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yielding complete photon spectra from radio frequencies to gamma-ray energies. The cessation of acceleration caused by the spatial and temporal limitations of the expanding SNR shell in moderately dense interstellar regions can yield spectral cutoffs in the TeV energy range that are consistent with Whipples TeV upper limits on those EGRET unidentified sources that have SNR associations. Supernova remnants in lower density environments generate higher energy cosmic rays that produce predominantly inverse Compton emission observable at super-TeV energies, consistent with the SN 1006 detection. In general, sources in such low-density regions will be gamma-ray-dim at GeV energies.


The Astrophysical Journal | 1990

First-order Fermi particle acceleration by relativistic shocks

Donald C. Ellison; Stephen P. Reynolds; Frank C. Jones

Monte Carlo calculations of test particle spectra and acceleration times are presented from first-order Fermi particle acceleration for parallel shocks with arbitrary flow velocities and compression ratios r up to seven, shock velocities u1 up to 0.98c, and injection energies ranging from thermal to highly superthermal. Far above the injection energy, the spectra are well-approximated by a power law and the spectra are always harder than for nonrelativistic shocks. Approximate analytic expression are given for the spectral slope as a function of u1 and r. The acceleration time as a function of particle energy is less than for nonrelativistic shocks by a factor that increases with u1 and is about three for u1 = 0.98c. It is confirmed that the spectrum for pitch-angle diffusion is considerably steeper than for large-angle scattering for the same shock parameters. 69 refs.


The Astrophysical Journal | 1992

Electron acceleration in Tycho's and Kepler's supernova remnants - Spectral evidence of Fermi shock acceleration

Stephen P. Reynolds; Donald C. Ellison

First model synchrotron spectra calculated with a self-consistent nonlinear shock model of first order Fermi acceleration are presented and compared with the observed radio spectra of Tychos and Keplers SNR. Excellent agreement is obtained, and the correct mean spectral indices of about -0.64 are easily reproduced. The model spectra are slightly concave, with hardening toward higher energies, and there is evidence for such an effect in the data, allowing the mean magnetic field strength to be estimated in each remnant. Improvements in both theory and observation could allow accurate values of magnetic fields to be inferred from sufficiently precise integrated synchrotron spectra.


Nature | 2014

Asymmetries in core-collapse supernovae from maps of radioactive 44 Ti in Cassiopeia A

Brian W. Grefenstette; Fiona A. Harrison; S. E. Boggs; Stephen P. Reynolds; Christopher L. Fryer; K. K. Madsen; Daniel R. Wik; Andreas Zoglauer; C I Ellinger; D. M. Alexander; Hongjun An; Didier Barret; Finn Erland Christensen; William W. Craig; K. Forster; P. Giommi; C. J. Hailey; A. Hornstrup; V. M. Kaspi; Takao Kitaguchi; Jason E. Koglin; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; M. Pivovaroff; S. Puccetti; V. Rana; D. Stern; Niels Jørgen Stenfeldt Westergaard

Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which 44Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission, from optical light echoes, and from jet-like features seen in the X-ray and optical ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.


The Astrophysical Journal | 2002

X-ray synchronization emitting Fe-rich ejecta in SNR RCW 86

Jeonghee Rho; Kristy K. Dyer; Kazimierz J. Borkowski; Stephen P. Reynolds

Supernova remnants may exhibit both thermal and nonthermal X-ray emission. In a previous study with ASCA data, we found that the middle-aged supernova remnant RCW 86 showed evidence for both processes, and we predicted that observations with much higher spatial resolution would distinguish harder X-rays, which we proposed were primarily synchrotron emission, from softer, thermal X-rays. Here we describe Chandra observations that amply confirm our predictions. Striking differences in the morphology of X-rays below 1 keV and above 2 keV point to a different physical origin. Hard X-ray emission is correlated fairly well with the edges of regions of radio emission, suggesting that these are the locations of shock waves at which both short-lived X-ray–emitting electrons and longer lived radio-emitting electrons are accelerated. Soft X-rays are spatially well correlated with optical emission from nonradiative shocks, which are almost certainly portions of the outer blast wave. These soft X-rays are well fitted with simple thermal plane-shock

Collaboration


Dive into the Stephen P. Reynolds's collaboration.

Top Co-Authors

Avatar

Kazimierz J. Borkowski

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Robert Petre

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Brian J. Williams

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Knox S. Long

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Blondin

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge