Stephen Panter
La Trobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Panter.
Plant Physiology | 2012
Shamila. Abeynayake; Stephen Panter; Ross Chapman; Tracie Webster; Simone Rochfort; Aidyn Mouradov; German Spangenberg
Proanthocyanidins and anthocyanins are produced by closely related branches of the flavonoid pathway and utilize the same metabolic intermediates. Previous studies have shown a flexible mechanism of flux diversion at the branch-point between the anthocyanin and proanthocyanidin pathways, but the molecular basis for this mechanism is poorly understood. Floral tissues in white clover plants (Trifolium repens) produce both proanthocyanidins and anthocyanins. This makes white clover amenable to studies of proanthocyanidin and anthocyanin biosynthesis and possible interactions within the flavonoid pathway. Results of this study show that the anthocyanin and proanthocyanidin pathways are spatially colocalized within epidermal cells of petals and temporally overlap in partially open flowers. A correlation between spatiotemporal patterns of anthocyanin and proanthocyanidin biosynthesis with expression profiles of putative flavonoid-related genes indicates that these pathways may recruit different isoforms of flavonoid biosynthetic enzymes. Furthermore, in transgenic white clover plants with down-regulated expression of the anthocyanidin reductase gene, levels of flavan 3-ols, anthocyanins, and flavonol glycosides and the expression levels of a range of genes encoding putative flavonoid biosynthetic enzymes and transcription factors were altered. This is consistent with the hypothesis that flux through the flavonoid pathway may be at least partially regulated by the availability of intermediates.
Transgenic Research | 2012
Stephen Panter; P. Chu; Emma. Ludlow; R. Garrett; Roger Kalla; M. Z. Z. Jahufer; A. de Lucas Arbiza; Simone Rochfort; Aidyn Mouradov; K. F. Smith; German Spangenberg
Viral diseases, such as Alfalfa mosaic virus (AMV), cause significant reductions in the productivity and vegetative persistence of white clover plants in the field. Transgenic white clover plants ectopically expressing the viral coat protein gene encoded by the sub-genomic RNA4 of AMV were generated. Lines carrying a single copy of the transgene were analysed at the molecular, biochemical and phenotypic level under glasshouse and field conditions. Field resistance to AMV infection, as well as mitotic and meiotic stability of the transgene, were confirmed by phenotypic evaluation of the transgenic plants at two sites within Australia. The T0 and T1 generations of transgenic plants showed immunity to infection by AMV under glasshouse and field conditions, while the T4 generation in an agronomically elite ‘Grasslands Sustain’ genetic background, showed a very high level of resistance to AMV in the field. An extensive biochemical study of the T4 generation of transgenic plants, aiming to evaluate the level and composition of natural toxicants and key nutritional parameters, showed that the composition of the transgenic plants was within the range of variation seen in non-transgenic populations.
Plant Methods | 2011
Shamila. Abeynayake; Stephen Panter; Aidyn Mouradov; German Spangenberg
BackgroundHistochemical staining of plant tissues with 4-dimethylaminocinnamaldehyde (DMACA) or vanillin-HCl is widely used to characterize spatial patterns of proanthocyanidin accumulation in plant tissues. These methods are limited in their ability to allow high-resolution imaging of proanthocyanidin deposits.ResultsTissue embedding techniques were used in combination with DMACA staining to analyze the accumulation of proanthocyanidins in Lotus corniculatus (L.) and Trifolium repens (L.) tissues. Embedding of plant tissues in LR White or paraffin matrices, with or without DMACA staining, preserved the physical integrity of the plant tissues, allowing high-resolution imaging that facilitated cell-specific localization of proanthocyanidins. A brown coloration was seen in proanthocyanidin-producing cells when plant tissues were embedded without DMACA staining and this was likely to have been due to non-enzymatic oxidation of proanthocyanidins and the formation of colored semiquinones and quinones.ConclusionsThis paper presents a simple, high-resolution method for analysis of proanthocyanidin accumulation in organs, tissues and cells of two plant species with different patterns of proanthocyanidin accumulation, namely Lotus corniculatus (birdsfoot trefoil) and Trifolium repens (white clover). This technique was used to characterize cell type-specific patterns of proanthocyanidin accumulation in white clover flowers at different stages of development.
Transgenic Research | 2014
Andrea Giordano; Zhiqian Liu; Stephen Panter; Adam M. Dimech; Yongjin Shang; Hewage Wijesinghe; Karen Fulgueras; Yidong Ran; Aidyn Mouradov; Simone Rochfort; Nicola J. Patron; German Spangenberg
C4 grasses are favoured as forage crops in warm, humid climates. The use of C4 grasses in pastures is expected to increase because the tropical belt is widening due to global climate change. While the forage quality of Paspalum dilatatum (dallisgrass) is higher than that of other C4 forage grass species, digestibility of warm-season grasses is, in general, poor compared with most temperate grasses. The presence of thick-walled parenchyma bundle-sheath cells around the vascular bundles found in the C4 forage grasses are associated with the deposition of lignin polymers in cell walls. High lignin content correlates negatively with digestibility, which is further reduced by a high ratio of syringyl (S) to guaiacyl (G) lignin subunits. Cinnamoyl-CoA reductase (CCR) catalyses the conversion of cinnamoyl CoA to cinnemaldehyde in the monolignol biosynthetic pathway and is considered to be the first step in the lignin-specific branch of the phenylpropanoid pathway. We have isolated three putative CCR1 cDNAs from P. dilatatum and demonstrated that their spatio-temporal expression pattern correlates with the developmental profile of lignin deposition. Further, transgenic P. dilatatum plants were produced in which a sense-suppression gene cassette, delivered free of vector backbone and integrated separately to the selectable marker, reduced CCR1 transcript levels. This resulted in the reduction of lignin, largely attributable to a decrease in G lignin.
PLOS ONE | 2014
Andrea Giordano; Noel O. I. Cogan; Sukhjiwan Kaur; Michelle C. Drayton; Aidyn Mouradov; Stephen Panter; Gustavo E. Schrauf; John Mason; German Spangenberg
Background Paspalum dilatatum Poir. (common name dallisgrass) is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. Results Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues (stems, roots, leaves and inflorescences) at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet (Setaria italica) genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats (SSRs). A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34% being polymorphic between sexual and apomictic biotypes. Conclusions The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression studies. Association of gene function with agronomic traits will significantly enable molecular breeding and advance germplasm enhancement.
Crop & Pasture Science | 2013
John W. Forster; Stephen Panter; Aidyn Mouradov; John Mason; German Spangenberg
Abstract. White clover is an important pasture legume of temperate regions, generally through co-cultivation with a pasture grass in a mixed-sward setting. White clover provides herbage with high nutritional quality to grazing animals, along with the environmental benefit of biological nitrogen fixation. Several key agronomic traits are amenable to modification in white clover through use of transgenic technology. Efficient methods for Agrobacterium-mediated transformation of white clover have been developed. The current status of transgenic research is reviewed for the following traits: resistance to viruses and insect pests; aluminium tolerance and phosphorus acquisition efficiency; control of leaf senescence and seed yield; biosynthesis of flavonoids and rumen bypass proteins for bloat safety and enhanced ruminant nutrition; cyanogenesis; and drought tolerance. Future prospects for transgenic technology in molecular breeding in white clover are also discussed.
Molecular Breeding | 2015
A. de Lucas; Stephen Panter; Aidyn Mouradov; Simone Rochfort; K. F. Smith; German Spangenberg
White clover (Trifolium repens L.) is an important pasture legume in temperate areas throughout the world, providing fodder for grazing animals and improving soil fertility via symbiotic nitrogen fixation. However, the persistence and stress tolerance of white clover are affected by a number of viruses including alfalfa mosaic virus. Transgenic white clover plants with ectopic expression of the alfalfa mosaic virus coat protein were resistant to the virus under field and greenhouse conditions. With all genetic modifications of major consequence, there is the possibility of unintended effects on forage quality and natural toxicant levels. In this paper, we describe the evaluation of a range of parameters related to the nutritive value of white clover herbage to grazing animals and a suite of naturally occurring secondary metabolites that have the potential to be natural toxicants in transgenic white clover plants and wild-type control plants with a similar genetic background. Samples were collected from plants grown under both field and glasshouse conditions. Several commercial cultivars were included for comparison. Although there was plant-to-plant variation, as expected from an obligate outcrossing species, there were no significant differences in the range of this variation between transgenic and wild-type plants. Furthermore, no consistent significant differences were found between groups of transgenic and wild-type plants from the same generation, when mean nutritional parameters (crude protein, in vitro dry matter digestibility, neutral detergent fibre and water-soluble carbohydrates) and natural toxicants (cyanogenic glucosides, phytoestrogens and saponins) were compared.
Crop & Pasture Science | 2015
Stephen Panter; Aidyn Mouradov; K. F. Smith; German Spangenberg
Abstract. There are no current commercial releases of genetically modified white clover, but several research groups are working on traits such as virus resistance, stress tolerance and bloat safety that are likely to provide large economic benefits for livestock farmers. However, white clover pollen is a common constituent of honey produced by bees foraging white clover flowers. Therefore, there is a need to develop tools to detect the presence of genetically modified pollen in white clover honey. The results presented in this paper describe the development and application of PCR-based techniques to detect the Alfalfa mosaic virus coat protein gene (AMV CP) and the neomycin phosphotransferase 2 selectable marker gene (npt2) in genetically modified white clover pollen, whether this pollen is collected fresh, from honey bees that have been foraging white clover, or from honey. Further research and development will be required to develop ‘field-ready’ tools for the detection and quantification of these transgenes in pollen and honey products. However, this paper demonstrates prospects and principles in pollen and honey from honeybees foraging transgenic white clover.
Crop & Pasture Science | 2015
Stephen Panter; Aidyn Mouradov; K. F. Smith; German Spangenberg
Abstract. White clover (Trifolium repens L.) is an important pasture legume in temperate areas throughout the world, providing fodder for grazing animals and improving soil fertility via symbiotic nitrogen fixation. However, the persistence and stress tolerance of white clover is affected by several viruses, chiefly Alfalfa mosaic virus (AMV), Clover yellow vein virus (ClYVV) and White clover mosaic virus (WClMV). Efforts to introgress natural forms of virus resistance from other Trifolium spp. into white clover and lucerne (alfalfa) have had only limited success. This has been addressed by developing white clover germplasm exhibiting viral-coat-protein-mediated resistance to AMV and non-transgenic resistance to ClYVV. This report describes PCR-based assays for detecting the transgenes associated with the H6 transformation event in seeds, fresh leaves, air-dried leaves and mixtures of air-dried herbage of white clover and perennial ryegrass (hay). Although further development is required to convert these assays for use in the field, this paper demonstrates the ability to detect these transgenes in a range of agricultural products associated with the commercial use of white clover.
Archive | 2009
Aidyn Mouradov; Stephen Panter; Shamila Weeraloon. Abeynayake; Ross Chapman; Tracie Webster; German Spangenberg
Proanthocyanidins (PAs) form the basis for bloat-safety in a number of forage legumes. An attractive strategy for increasing the level of PAs in the foliage of forage legumes, including white clover (Trifolium repens) and alfalfa (Medicago sativa), involves metabolic reprogramming to divert intermediates from the pre-existing anthocyanin (ANT) pathway to PA biosynthesis. The ANT and PA pathways show remarkable similarities at the molecular and biochemical levels. However, modification of flavonoid biosynthesis to produce an agronomically desirable level of PA in foliage (2–4% of dry weight) is still a formidable task. To meet this challenge, a deeper understanding of the spatial patterns of ANT and PA accumulation in different tissues and cells of white clover and changes associated with development and exposure of plants to stress is required. Improved knowledge of PA and ANT biosynthesis should enhance the ability to reprogram the flavonoid pathway to develop bloat-safe white clover plants with an elevated level of PA in the foliage.