Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen R. Shouldice is active.

Publication


Featured researches published by Stephen R. Shouldice.


Nature Reviews Microbiology | 2009

DSB proteins and bacterial pathogenicity.

Begoña Heras; Stephen R. Shouldice; Makrina Totsika; Martin J. Scanlon; Mark A. Schembri; Jennifer L. Martin

If DNA is the information of life, then proteins are the machines of life — but they must be assembled and correctly folded to function. A key step in the protein-folding pathway is the introduction of disulphide bonds between cysteine residues in a process called oxidative protein folding. Many bacteria use an oxidative protein-folding machinery to assemble proteins that are essential for cell integrity and to produce virulence factors. Although our current knowledge of this machinery stems largely from Escherichia coli K-12, this view must now be adjusted to encompass the wider range of disulphide catalytic systems present in bacteria.


Journal of Biological Chemistry | 2009

Properties of the Thioredoxin Fold Superfamily Are Modulated by a Single Amino Acid Residue

Guoping Ren; Daniel Stephan; Zhaohui Xu; Ying Zheng; Danming Tang; Rosemary S. Harrison; Mareike Kurz; Russell Jarrott; Stephen R. Shouldice; Annie Hiniker; Jennifer L. Martin; Begoña Heras; James C. A. Bardwell

The ubiquitous thioredoxin fold proteins catalyze oxidation, reduction, or disulfide exchange reactions depending on their redox properties. They also play vital roles in protein folding, redox control, and disease. Here, we have shown that a single residue strongly modifies both the redox properties of thioredoxin fold proteins and their ability to interact with substrates. This residue is adjacent in three-dimensional space to the characteristic CXXC active site motif of thioredoxin fold proteins but distant in sequence. This residue is just N-terminal to the conservative cis-proline. It is isoleucine 75 in the case of thioredoxin. Our findings support the conclusion that a very small percentage of the amino acid residues of thioredoxin-related proteins are capable of dictating the functions of these proteins.


Antioxidants & Redox Signaling | 2011

Structure and Function of DsbA, a Key Bacterial Oxidative Folding Catalyst

Stephen R. Shouldice; Begoña Heras; Patricia M. Walden; Makrina Totsika; Mark A. Schembri; Jennifer L. Martin

Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.


Journal of Biological Chemistry | 2008

Staphylococcus aureus DsbA Does Not Have a Destabilizing Disulfide: A NEW PARADIGM FOR BACTERIAL OXIDATIVE FOLDING

Begoña Heras; Mareike Kurz; Russell Jarrott; Stephen R. Shouldice; Patrick Frei; Gautier Robin; Masa Cemazar; Linda Thöny-Meyer; Jennifer L. Martin

In Gram-negative bacteria, the introduction of disulfide bonds into folding proteins occurs in the periplasm and is catalyzed by donation of an energetically unstable disulfide from DsbA, which is subsequently re-oxidized through interaction with DsbB. Gram-positive bacteria lack a classic periplasm but nonetheless encode Dsb-like proteins. Staphylococcus aureus encodes just one Dsb protein, a DsbA, and no DsbB. Here we report the crystal structure of S. aureus DsbA (SaDsbA), which incorporates a thioredoxin fold with an inserted helical domain, like its Escherichia coli counterpart EcDsbA, but it lacks the characteristic hydrophobic patch and has a truncated binding groove near the active site. These findings suggest that SaDsbA has a different substrate specificity than EcDsbA. Thermodynamic studies indicate that the oxidized and reduced forms of SaDsbA are energetically equivalent, in contrast to the energetically unstable disulfide form of EcDsbA. Further, the partial complementation of EcDsbA by SaDsbA is independent of EcDsbB and biochemical assays show that SaDsbA does not interact with EcDsbB. The identical stabilities of oxidized and reduced SaDsbA may facilitate direct re-oxidation of the protein by extracellular oxidants, without the need for DsbB.


Molecular Microbiology | 2010

In vivo oxidative protein folding can be facilitated by oxidation–reduction cycling

Stephen R. Shouldice; Seung Hyun Cho; Dana Boyd; Begoña Heras; Markus Eser; Jon Beckwith; Paul Riggs; Jennifer L. Martin; Mehmet Berkmen

Current dogma dictates that bacterial proteins with misoxidized disulfide bonds are shuffled into correctly oxidized states by DsbC. There are two proposed mechanisms for DsbC activity. The first involves a DsbC‐only model of substrate disulfide rearrangement. The second invokes cycles of reduction and oxidation of substrate disulfide bonds by DsbC and DsbA respectively. Here, we addressed whether the second mechanism is important in vivo by identifying whether a periplasmic reductase could complement DsbC. We screened for naturally occurring periplasmic reductases in Bacteroides fragilis, a bacterium chosen because we predicted it encodes reductases and has a reducing periplasm. We found that the B. fragilis periplasmic protein TrxP has a thioredoxin fold with an extended N‐terminal region; that it is a very active reductase but a poor isomerase; and that it fully complements dsbC. These results provide direct in vivo evidence that correctly folded protein is achievable via cycles of oxidation and reduction.


Journal of Bacteriology | 2004

Structural Basis for Iron Binding and Release by a Novel Class of Periplasmic Iron-Binding Proteins Found in Gram-Negative Pathogens

Stephen R. Shouldice; Robert J. Skene; Douglas R. Dougan; Gyorgy Snell; Duncan E. McRee; Anthony B. Schryvers; Leslie W. Tari

We have determined the 1.35- and 1.45-A structures, respectively, of closed and open iron-loaded forms of Mannheimia haemolytica ferric ion-binding protein A. M. haemolytica is the causative agent in the economically important and fatal disease of cattle termed shipping fever. The periplasmic iron-binding protein of this gram-negative bacterium, which has homologous counterparts in many other pathogenic species, performs a key role in iron acquisition from mammalian host serum iron transport proteins and is essential for the survival of the pathogen within the host. The ferric (Fe(3+)) ion in the closed structure is bound by a novel asymmetric constellation of four ligands, including a synergistic carbonate anion. The open structure is ligated by three tyrosyl residues and a dynamically disordered solvent-exposed anion. Our results clearly implicate the synergistic anion as the primary mediator of global protein conformation and provide detailed insights into the molecular mechanisms of iron binding and release in the periplasm.


Journal of Biological Chemistry | 2003

High resolution structure of an alternate form of the ferric ion binding protein from Haemophilus influenzae

Stephen R. Shouldice; Douglas R. Dougan; Robert J. Skene; Leslie W. Tari; Duncan E. McRee; Rong-hua Yu; Anthony B. Schryvers

The periplasmic iron binding protein of pathogenic Gram-negative bacteria performs an essential role in iron acquisition from transferrin and other iron sources. Structural analysis of this protein from Haemophilus influenzaeidentified four amino acids that ligand the bound iron: His9, Glu57, Tyr195, and Tyr196. A phosphate provides an additional ligand, and the presence of a water molecule is required to complete the octahedral geometry for stable iron binding. We report the 1.14-Å resolution crystal structure of the iron-loaded form of the H. influenzae periplasmic ferric ion binding protein (FbpA) mutant H9Q. This protein was produced in the periplasm of Escherichia coli and, after purification and conversion to the apo form, was iron-loaded. H9Q is able to bind ferric iron in an open conformation. A surprising finding in the present high resolution structure is the presence of EDTA located at the previously determined anion ternary binding site, where phosphate is located in the wild type holo and apo structures. EDTA contributes four of the six coordinating ligands for iron, with two Tyr residues, 195 and 196, completing the coordination. This is the first example of a metal binding protein with a bound metal·EDTA complex. The results suggest that FbpA may have the ability to bind and transport iron bound to biological chelators, in addition to bare ferric iron.


Biometals | 2004

Lactoferrin receptors in Gram-negative bacteria: Insights into the iron acquisition process

Andrew Ekins; Ali G. Khan; Stephen R. Shouldice; Anthony B. Schryvers

One component of the anti-microbial function of lactoferrin (Lf) is its ability to sequester iron from potential pathogens. To overcome this iron limitation, a number of Gram-negative bacterial pathogens have developed a mechanism for acquiring iron directly from this host glycoprotein. This mechanism involves surface receptors capable of specifically binding Lf from the host, removing iron and transporting it across the outer membrane. The iron is then bound by a periplasmic iron-binding protein, FbpA, and transported into the cell via an inner membrane complex comprised of FbpB and FbpC. The receptor has been shown to consist of two proteins, LbpA and LbpB. LbpB is bilobed lipoprotein anchored to the outer membrane via fatty acyl groups attached to the N-terminal cysteine. LbpA is a homologue of siderophore receptors, which consist of an N-terminal plug and a C-terminal beta-barrel region. We propose that the receptor proteins, LbpA and LbpB, induce conformational changes in human Lf (hLf) that lower its affinity for iron that binding by FbpA can drive the transport across the outer membrane, a mechanism shared with transferrin (Tf) receptors. The interaction between the receptor proteins and Lf is quite extensive and has been previously studied by using chimeric proteins comprised of Lf & Tf. In an attempt to evaluate the role of FbpA in the transport process, a series of site-directed mutants of FbpA were prepared and used to replace the wild-type protein in the iron acquisition pathway. The mutations were made in the iron-binding and anion-binding ligands of FbpA and were designed to result in altered binding properties. Protein crystallography of the iron-bound form of the Q58L mutant protein revealed that it was in the open conformation with iron coordinated by Y195 and Y196 from the C-terminal domain but not by the other iron-liganding amino acids from the N-terminal domain, H9 and E57. Replacement of the native FbpA in Neisseria meningitidis with wild-type or mutant Haemophilus influenzae FbpAs resulted in a defect in growth on Tf or Lf, suggesting that there may be a barrier to functional expression of H. influenzae FbpAs in Neisseria meningitidis. Thus mutants of the N. meningitidis FbpA are being prepared to replace wild-type protein in order to test their ability to mediate transport from hLf.


Journal of Biological Chemistry | 2010

Structural and Functional Characterization of Three DsbA Paralogues from Salmonella enterica Serovar Typhimurium

Begoña Heras; Makrina Totsika; Russell Jarrott; Stephen R. Shouldice; Gregor Gunčar; Maud E. S. Achard; Timothy J. Wells; M. Pilar Argente; Alastair G. McEwan; Mark A. Schembri

In prototypic Escherichia coli K-12 the introduction of disulfide bonds into folding proteins is mediated by the Dsb family of enzymes, primarily through the actions of the highly oxidizing protein EcDsbA. Homologues of the Dsb catalysts are found in most bacteria. Interestingly, pathogens have developed distinct Dsb machineries that play a pivotal role in the biogenesis of virulence factors, hence contributing to their pathogenicity. Salmonella enterica serovar (sv.) Typhimurium encodes an extended number of sulfhydryl oxidases, namely SeDsbA, SeDsbL, and SeSrgA. Here we report a comprehensive analysis of the sv. Typhimurium thiol oxidative system through the structural and functional characterization of the three Salmonella DsbA paralogues. The three proteins share low sequence identity, which results in several unique three-dimensional characteristics, principally in areas involved in substrate binding and disulfide catalysis. Furthermore, the Salmonella DsbA-like proteins also have different redox properties. Whereas functional characterization revealed some degree of redundancy, the properties of SeDsbA, SeDsbL, and SeSrgA and their expression pattern in sv. Typhimurium indicate a diverse role for these enzymes in virulence.


Journal of Biological Chemistry | 2003

Crystal structure of Pasteurella haemolytica ferric ion-binding protein A reveals a novel class of bacterial iron-binding proteins

Stephen R. Shouldice; Douglas R. Dougan; Pamela A. Williams; Robert J. Skene; Gyorgy Snell; Daniel Scheibe; Shane D. Kirby; David J. Hosfield; Duncan E. McRee; Anthony B. Schryvers; Leslie W. Tari

Pasteurellosis caused by the Gram-negative pathogen Pasteurella haemolytica is a serious disease leading to death in cattle. To scavenge growth-limiting iron from the host, the pathogen utilizes the periplasmic ferric ion-binding protein A (PhFbpA) as a component of an ATP-binding cassette transport pathway. We report the 1.2-Å structure of the iron-free (apo) form of PhFbpA, which is a member of the transferrin structural superfamily. The protein structure adopts a closed conformation, allowing us to reliably assign putative iron-coordinating residues. Based on our analysis, PhFbpA utilizes a unique constellation of binding site residues and anions to octahedrally coordinate an iron atom. A surprising finding in the structure is the presence of two formate anions on opposite sides of the iron-binding pocket. The formate ions tether the N- and C-terminal domains of the protein and stabilize the closed structure, also providing clues as to probable candidates for synergistic anions in the iron-loaded state. PhFbpA represents a new class of bacterial iron-binding proteins.

Collaboration


Dive into the Stephen R. Shouldice's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makrina Totsika

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie W. Tari

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Mareike Kurz

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge