Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen S. Chung is active.

Publication


Featured researches published by Stephen S. Chung.


Science Translational Medicine | 2014

Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.

Marco L. Davila; Isabelle Riviere; Xiuyan Wang; Shirley Bartido; Jae Park; Kevin J. Curran; Stephen S. Chung; Jolanta Stefanski; Oriana Borquez-Ojeda; Malgorzata Olszewska; Jinrong Qu; Teresa Wasielewska; Qing He; Mitsu Fink; Himaly Shinglot; Maher Youssif; Mark Satter; Yongzeng Wang; James Hosey; Hilda Quintanilla; Elizabeth Halton; Yvette Bernal; Diana C. G. Bouhassira; Maria E. Arcila; Mithat Gonen; Gail J. Roboz; P. Maslak; Dan Douer; Mark G. Frattini; Sergio Giralt

CD19 CAR T cell therapy induces complete remissions in 88% of 16 adult patients with relapsed or refractory acute lymphoblastic leukemia. CARving Out a Niche for CAR T Cell Immunotherapy Relapsed or refractory B acute lymphoblastic leukemia (B-ALL) in adults has a poor prognosis, with an expected median survival of less than 6 months. An emerging therapy for adult B-ALL is through T cells that target tumor cells with chimeric antigen receptors (CARs). Davila et al. now report the results of a phase 1 clinical trial of CAR T cells in 16 relapsed or refractory adult patients. The CD19-targeting CAR T cell therapy resulted in an 88% complete response rate, which allowed most of the patients to transition to allogeneic hematopoietic stem cell transplantation—the current standard of care. Moreover, the authors carefully characterized cytokine release syndrome (CRS), which is a series of toxicities associated with CAR T cell therapy. They found that serum C-reactive protein (CRP) associated with the severity of CRS, which should allow for identification of the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the CRS. This is especially important because treatment for CRS may limit the efficacy of the CAR T cell therapy. These data support the need for further multicenter trials for CAR T cell therapy. We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome–positive (Ph+) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy.


The New England Journal of Medicine | 2015

Targeting Mutant BRAF in Relapsed or Refractory Hairy-Cell Leukemia

Enrico Tiacci; Jae H. Park; Luca De Carolis; Stephen S. Chung; Alessandro Broccoli; Sasinya N. Scott; Francesco Zaja; Sean M. Devlin; Alessandro Pulsoni; Young Rock Chung; Michele Cimminiello; Eunhee Kim; Davide Rossi; Richard Stone; Giovanna Motta; Alan Saven; Marzia Varettoni; Jessica K. Altman; Antonella Anastasia; Michael R. Grever; Achille Ambrosetti; Kanti R. Rai; Vincenzo Fraticelli; Mario E. Lacouture; Angelo Michele Carella; Ross L. Levine; Pietro Leoni; Alessandro Rambaldi; Franca Falzetti; Stefano Ascani

BACKGROUND BRAF V600E is the genetic lesion underlying hairy-cell leukemia. We assessed the safety and activity of the oral BRAF inhibitor vemurafenib in patients with hairy-cell leukemia that had relapsed after treatment with a purine analogue or who had disease that was refractory to purine analogues. METHODS We conducted two phase 2, single-group, multicenter studies of vemurafenib (at a dose of 960 mg twice daily)--one in Italy and one in the United States. The therapy was administered for a median of 16 weeks in the Italian study and 18 weeks in the U.S. study. Primary end points were the complete response rate (in the Italian trial) and the overall response rate (in the U.S. trial). Enrollment was completed (28 patients) in the Italian trial in April 2013 and is still open (26 of 36 planned patients) in the U.S. trial. RESULTS The overall response rates were 96% (25 of 26 patients who could be evaluated) after a median of 8 weeks in the Italian study and 100% (24 of 24) after a median of 12 weeks in the U.S. study. The rates of complete response were 35% (9 of 26 patients) and 42% (10 of 24) in the two trials, respectively. In the Italian trial, after a median follow-up of 23 months, the median relapse-free survival was 19 months among patients with a complete response and 6 months among those with a partial response; the median treatment-free survival was 25 months and 18 months, respectively. In the U.S. trial, at 1 year, the progression-free survival rate was 73% and the overall survival rate was 91%. Drug-related adverse events were usually of grade 1 or 2, and the events most frequently leading to dose reductions were rash and arthralgia or arthritis. Secondary cutaneous tumors (treated with simple excision) developed in 7 of 50 patients. The frequent persistence of phosphorylated ERK-positive leukemic cells in bone marrow at the end of treatment suggests bypass reactivation of MEK and ERK as a resistance mechanism. CONCLUSIONS A short oral course of vemurafenib was highly effective in patients with relapsed or refractory hairy-cell leukemia. (Funded by the Associazione Italiana per la Ricerca sul Cancro and others; EudraCT number, 2011-005487-13; ClinicalTrials.gov number NCT01711632.).


Haematologica | 2013

Mutational analysis of therapy-related myelodysplastic syndromes and acute myelogenous leukemia

Alan H. Shih; Stephen S. Chung; Emily K. Dolezal; Su Jiang Zhang; Omar Abdel-Wahab; Christopher Y. Park; Stephen D. Nimer; Ross L. Levine; Virginia M. Klimek

Therapy-related myelodysplastic syndromes and acute myelogenous leukemia comprise a poor-risk subset of myelodysplastic syndromes and acute myelogenous leukemia. Large-scale mutation profiling efforts in de novo myelodysplastic syndromes have identified mutations that correlate with clinical features, but such mutations have not been investigated in therapy-related myelodysplastic syndromes and acute myelogenous leukemia. Genomic DNA from 38 patient samples were subjected to high throughput polymerase chain reaction and sequenced for TP53, TET2, DNMT3A, ASXL1, IDH1, IDH2, EZH2, EED, SUZ12, RBBP4, SRSF2, U2AF35, and SF3B1. We identified somatic mutations in 16 of 38 (42%) patients. TP53 mutations were the most common lesion, detected in 8 of 38 (21%) patients, followed by TET2 in 4 of 38 (10.5%). Cases with a TP53 mutation or loss of the TP53 locus had a worse overall survival compared to those with wild-type TP53 (8.8 vs. 37.4 months; P=0.0035).


Nature Medicine | 2016

Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia

Sheng Li; Francine E. Garrett-Bakelman; Stephen S. Chung; Mathijs A. Sanders; Todd Hricik; Franck Rapaport; Jay Patel; Richard Dillon; Priyanka Vijay; Anna L. Brown; Alexander E. Perl; Joy Cannon; Lars Bullinger; Selina M. Luger; Michael W. Becker; Ian D. Lewis; L. B. To; Ruud Delwel; Bob Löwenberg; Hartmut Döhner; Konstanze Döhner; Monica L. Guzman; Duane C. Hassane; Gail J. Roboz; David Grimwade; Peter J. M. Valk; Richard J. D'Andrea; Martin Carroll; Christopher Y. Park; Donna Neuberg

Genetic heterogeneity contributes to clinical outcome and progression of most tumors, but little is known about allelic diversity for epigenetic compartments, and almost no data exist for acute myeloid leukemia (AML). We examined epigenetic heterogeneity as assessed by cytosine methylation within defined genomic loci with four CpGs (epialleles), somatic mutations, and transcriptomes of AML patient samples at serial time points. We observed that epigenetic allele burden is linked to inferior outcome and varies considerably during disease progression. Epigenetic and genetic allelic burden and patterning followed different patterns and kinetics during disease progression. We observed a subset of AMLs with high epiallele and low somatic mutation burden at diagnosis, a subset with high somatic mutation and lower epiallele burdens at diagnosis, and a subset with a mixed profile, suggesting distinct modes of tumor heterogeneity. Genes linked to promoter-associated epiallele shifts during tumor progression showed increased single-cell transcriptional variance and differential expression, suggesting functional impact on gene regulation. Thus, genetic and epigenetic heterogeneity can occur with distinct kinetics likely to affect the biological and clinical features of tumors.


Science Translational Medicine | 2014

Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia

Stephen S. Chung; Eunhee Kim; Jae H. Park; Young Rock Chung; Piro Lito; Julie Teruya-Feldstein; Wenhuo Hu; Wendy Béguelin; Sebastien Monette; Cihangir Duy; Raajit Rampal; Leon Telis; Minal Patel; Min-Kyung Kim; Kety Huberman; Nancy Bouvier; Michael F. Berger; Ari Melnick; Neal Rosen; Martin S. Tallman; Christopher Y. Park; Omar Abdel-Wahab

The cell of origin for the chronic lymphoproliferative disorder hairy cell leukemia is a long-term hematopoietic stem cell, as shown through human genetic data and murine genetic models. Finding the Origin Story for a Leukemia The cells that give rise to a cancer called hairy cell leukemia are hematopoietic stem cells, the precursors for all the types of normal blood cells, according to a new study by Chung et al. Although hairy cell leukemia is usually thought to be derived from mature B cells, it has not previously been matched with any specific stage of normal B cell development. Now, the authors performed detailed genetic analysis of human leukemia samples and also modeled this cancer in mice with different types of mutations, thus revealing the origin for hairy cell leukemia. Understanding the causes of this leukemia should help guide the design of effective treatments and may improve our understanding of similar cancers. Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cells—all classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs.


Blood | 2015

MiR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a

Wenhuo Hu; James Dooley; Stephen S. Chung; Dhruva Chandramohan; Luisa Cimmino; Siddhartha Mukherjee; Christopher E. Mason; Bart De Strooper; Adrian Liston; Christopher Y. Park

Hematopoietic stem cells (HSCs) possess the ability to generate all hematopoietic cell types and to self-renew over long periods, but the mechanisms that regulate their unique properties are incompletely understood. Herein, we show that homozygous deletion of the miR-29a/b-1 bicistron results in decreased numbers of hematopoietic stem and progenitor cells (HSPCs), decreased HSC self-renewal, and increased HSC cell cycling and apoptosis. The HSPC phenotype is specifically due to loss of miR-29a, because miR-29b expression is unaltered in miR-29a/b-1-null HSCs, and only ectopic expression of miR-29a restores HSPC function both in vitro and in vivo. HSCs lacking miR-29a/b-1 exhibit widespread transcriptional dysregulation and adopt gene expression patterns similar to normal committed progenitors. A number of predicted miR-29 target genes, including Dnmt3a, are significantly upregulated in miR-29a/b-1-null HSCs. The loss of negative regulation of Dnmt3a by miR-29a is a major contributor to the miR-29a/b-1-null HSPC phenotype, as both in vitro Dnmt3a short hairpin RNA knockdown assays and a genetic haploinsufficiency model of Dnmt3a restored the frequency and long-term reconstitution capacity of HSCs from miR-29a/b-1-deficient mice. Overall, these data demonstrate that miR-29a is critical for maintaining HSC function through its negative regulation of Dnmt3a.


Biology of Blood and Marrow Transplantation | 2015

CD34-Selected Hematopoietic Stem Cell Transplants Conditioned with Myeloablative Regimens and Antithymocyte Globulin for Advanced Myelodysplastic Syndrome: Limited Graft-versus-Host Disease without Increased Relapse.

Roni Tamari; Stephen S. Chung; Esperanza B. Papadopoulos; Ann A. Jakubowski; Patrick Hilden; Sean M. Devlin; Jenna D. Goldberg; Miguel-Angel Perales; Doris M. Ponce; Craig S. Sauter; Molly Maloy; Dara Herman; Virginia M. Klimek; James W. Young; Richard J. O'Reilly; Sergio Giralt; Hugo Castro-Malaspina

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative therapy for patients with myelodysplastic syndrome (MDS). Donor T cells are critical for the graft-versus-tumor effect but carry the risk of graft-versus-host disease (GVHD). CD34 selection with immunomagnetic beads has been an effective method of depleting alloreactive donor T cells from the peripheral blood graft and has been shown to result in significant reduction in acute and chronic GVHD. We analyzed the outcomes of 102 adults (median age, 57.6 years) with advanced MDS who received a CD34-selected allo-HSCT between January 1997 and April 2012 at Memorial Sloan Kettering Cancer Center. The cumulative incidences of grades II to IV acute GVHD were 9.8% at day 100 (95% confidence interval [CI], 5.0% to 16.5%) and 15.7% at day 180 (95% CI, 9.4% to 23.4%). The cumulative incidence of chronic GVHD at 1 year was 3.9% (95% CI, 1.3% to 9.0%). The cumulative incidences of relapse were 11.8% at 1 year (95% CI, 6.4% to 18.9%) and 15.7% at 2 years (95% CI, 9.4% to 23.4%). Forty-eight patients were alive with a median follow-up of 71.7 months. Rates of overall survival (OS) were 56.9% at 2 years (95% CI, 48% to 67.3%) and 49.3% at 5 years (95% CI, 40.4% to 60.2%). Rates of relapse-free survival (RFS) were 52.0% at 2 years (95% CI, 41.9% to 61.1%) and 47.6% at 5 years (95% CI, 37.5% to 56.9%). The cumulative incidences of nonrelapse mortality were 7.8% at day 100 (95% CI, 3.7% to 14.1%), 22.5% at 1 year (95% CI, 15.0% to 31.1%), and 33.4% at 5 years (95% CI, 24.2% to 42.6%) post-transplant. The incidence of chronic GVHD/RFS overlapped with RFS. These findings demonstrate that ex vivo T cell-depleted allo-HSCT by CD34 selection offers long-term OS and RFS with low incidences of acute and chronic GVHD and without an increased risk of relapse.


Science Translational Medicine | 2017

CD99 is a therapeutic target on disease stem cells in myeloid malignancies

Stephen S. Chung; William S. Eng; Wenhuo Hu; Mona Khalaj; Francine E. Garrett-Bakelman; Montreh Tavakkoli; Ross L. Levine; Martin Carroll; Virginia M. Klimek; Ari Melnick; Christopher Y. Park

CD99 is a potential therapeutic target enriched on disease stem cells in myeloid malignancies. Stemming the tide of leukemia development Acute myeloid leukemia and myelodysplastic syndromes are maintained by specific populations of malignant stem cells, and successful treatment requires the eradication of these disease-causing cells. Chung et al. identified CD99 as a marker expressed on the surface of leukemic stem cells but not normal hematopoietic stem cells, suggesting its potential as a therapeutic target. A monoclonal antibody against CD99 had promising preclinical effectiveness in xenograft models and was selective for malignant stem cells, paving the way for further development of this approach. Acute myeloid leukemia (AML) and the myelodysplastic syndromes (MDS) are initiated and sustained by self-renewing malignant stem cells; thus, eradication of AML and MDS stem cells is required for cure. We identified CD99 as a cell surface protein frequently overexpressed on AML and MDS stem cells. Expression of CD99 allows for prospective separation of leukemic stem cells (LSCs) from functionally normal hematopoietic stem cells in AML, and high CD99 expression on AML blasts enriches for functional LSCs as demonstrated by limiting dilution xenotransplant studies. Monoclonal antibodies (mAbs) targeting CD99 induce the death of AML and MDS cells in a SARC family kinase–dependent manner in the absence of immune effector cells or complement, and anti-CD99 mAbs exhibit antileukemic activity in AML xenografts. These data establish CD99 as a marker of AML and MDS stem cells, as well as a promising therapeutic target in these disorders.


Therapeutic advances in hematology | 2011

The role of microRNAs in hematopoietic stem cell and leukemic stem cell function

Stephen S. Chung; Wenhuo Hu; Christopher Y. Park

Hematopoietic stem cells (HSCs) are defined by their ability to self-renew and reconstitute all elements of the hematopoietic system. Acute myeloid leukemia (AML) is thought to arise from, and be maintained by, leukemic stem cells (LSCs), which exhibit similar features to HSCs, including the abilities to self-renew and differentiate into non-self-renewing cells. Acquisition of stem-cell-like characteristics by the LSCs is likely mediated in part by molecular mechanisms that normally regulate HSC function. Thus, understanding the shared and unique aspects of the molecular regulation of these cell populations will be important to understanding the relationship between normal hematopoiesis and leukemogenesis. MicroRNAs (miRNAs) are small noncoding RNAs that act at the posttranscriptional level to regulate protein expression. Unfortunately, most investigations of the role of miRNAs in normal hematopoiesis have been restricted to studies of their effects on lineage commitment in progenitors and mature effector cell function, but not on HSCs. Recent studies have identified miRNAs that enhance HSC function, and an abundance of profiling studies using primary AML samples have identified dysregulated miRNAs that may target genes implicated in self-renewal (HOX genes, P53, and PTEN), thus providing a potential link between normal and malignant stem cells. While these studies as well as recent in vivo models of miRNA-induced leukemogenesis (e.g. miR-29a, miR-125b) suggest a role for miRNAs in the development of AML, future studies using serial transplantation of primary AML blasts, from both mouse models and primary human AML specimens, will be necessary to assess the roles of miRNAs in LSC biology.


Blood | 2017

Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations

Benjamin H. Durham; Bartlomiej M. Getta; Sascha Dietrich; Justin Taylor; Helen H. Won; James M Bogenberger; Sasinya N. Scott; Eunhee Kim; Young Rock Chung; Stephen S. Chung; Jennifer Hüllein; Tatjana Walther; Lu Wang; Sydney X. Lu; Christopher C. Oakes; Raoul Tibes; Torsten Haferlach; Barry S. Taylor; Martin S. Tallman; Michael F. Berger; Jae H. Park; Thorsten Zenz; Omar Abdel-Wahab

Classical hairy cell leukemia (cHCL) is characterized by a near 100% frequency of the BRAFV600E mutation, whereas ∼30% of variant HCLs (vHCLs) have MAP2K1 mutations. However, recurrent genetic alterations cooperating with BRAFV600E or MAP2K1 mutations in HCL, as well as those in MAP2K1 wild-type vHCL, are not well defined. We therefore performed deep targeted mutational and copy number analysis of cHCL (n = 53) and vHCL (n = 8). The most common genetic alteration in cHCL apart from BRAFV600E was heterozygous loss of chromosome 7q, the minimally deleted region of which targeted wild-type BRAF, subdividing cHCL into those hemizygous versus heterozygous for the BRAFV600E mutation. In addition to CDKN1B mutations in cHCL, recurrent inactivating mutations in KMT2C (MLL3) were identified in 15% and 25% of cHCLs and vHCLs, respectively. Moreover, 13% of vHCLs harbored predicted activating mutations in CCND3 A change-of-function mutation in the splicing factor U2AF1 was also present in 13% of vHCLs. Genomic analysis of de novo vemurafenib-resistant cHCL identified a novel gain-of-function mutation in IRS1 and losses of NF1 and NF2, each of which contributed to resistance. These data provide further insight into the genetic bases of cHCL and vHCL and mechanisms of RAF inhibitor resistance encountered clinically.

Collaboration


Dive into the Stephen S. Chung's collaboration.

Top Co-Authors

Avatar

Christopher Y. Park

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ross L. Levine

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Virginia M. Klimek

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Wenhuo Hu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Abdel-Wahab

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Martin Carroll

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Martin S. Tallman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge