Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen S. Dimond is active.

Publication


Featured researches published by Stephen S. Dimond.


Toxicological Sciences | 2008

Two-Generation Reproductive Toxicity Study of Dietary Bisphenol A in CD-1 (Swiss) Mice

Rochelle W. Tyl; Christina B. Myers; Melissa C. Marr; Carol S. Sloan; Nora P. Castillo; M. Michael Veselica; John C. Seely; Stephen S. Dimond; John P. Van Miller; Ronald N. Shiotsuka; Dieter Beyer; Steven G. Hentges; John M. Waechter

Dietary bisphenol A (BPA) was evaluated in a mouse two-generation study at 0, 0.018, 0.18, 1.8, 30, 300, or 3500 ppm (0, 0.003, 0.03, 0.3, 5, 50, or 600 mg BPA/kg/day, 28 per sex per group). A concurrent positive control group of dietary 17beta-estradiol (0.5 ppm; 28 per sex) confirmed the sensitivity of CD-1 mice to an endogenous estrogen. There were no BPA-related effects on adult mating, fertility or gestational indices, ovarian primordial follicle counts, estrous cyclicity, precoital interval, offspring sex ratios or postnatal survival, sperm parameters or reproductive organ weights or histopathology (including the testes and prostate). Adult systemic effects: at 300 ppm, only centrilobular hepatocyte hypertrophy; at 3500 ppm, reduced body weight, increased kidney and liver weights, centrilobular hepatocyte hypertrophy, and renal nephropathy in males. At 3500 ppm, BPA also reduced F1/F2 weanling body weight, reduced weanling spleen and testes weights (with seminiferous tubule hypoplasia), slightly delayed preputial separation (PPS), and apparently increased the incidence of treatment-related, undescended testes only in weanlings, which did not result in adverse effects on adult reproductive structures or functions; this last finding is considered a developmental delay in the normal process of testes descent. It is likely that these transient effects were secondary to (and caused by) systemic toxicity. Gestational length was increased by 0.3 days in F1/F2 generations; the toxicological significance, if any, of this marginal difference is unknown. At lower doses (0.018-30 ppm), there were no treatment-related effects and no evidence of nonmonotonic dose-response curves for any parameter. The systemic no observable effect level (NOEL) was 30 ppm BPA (approximately 5 mg/kg/day); the reproductive/developmental NOEL was 300 ppm (approximately 50 mg/kg/day). Therefore, BPA is not considered a selective reproductive or developmental toxicant in mice.


Toxicological Sciences | 2010

Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats

Donald G. Stump; Melissa J. Beck; Ann Radovsky; Robert H. Garman; Lester L. Freshwater; Larry P. Sheets; M. Sue Marty; John M. Waechter; Stephen S. Dimond; John P. Van Miller; Ronald N. Shiotsuka; Dieter Beyer; Anne H. Chappelle; Steven G. Hentges

This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively).


Journal of Analytical Toxicology | 2010

Development of a Method for the Determination of Bisphenol A at Trace Concentrations in Human Blood and Urine and Elucidation of Factors Influencing Method Accuracy and Sensitivity

Dan A. Markham; John M. Waechter; Martina Wimber; Narayana Rao; Paul Connolly; Jane Chen Chuang; Steven Hentges; Ronald N. Shiotsuka; Stephen S. Dimond; Anne H. Chappelle

This publication describes a method for the determination of total bisphenol A (BPA and conjugated BPA) following enzyme hydrolysis and is intended as a companion to our previously developed analytical method for the determination of free BPA (the aglycone) in human blood and urine using high-performance liquid chromatography-tandem mass spectrometry ( 1). That free BPA method provided a means to account for and/or eliminate background contamination and demonstrated accuracy and reproducibility in both matrices fortified with BPA or a surrogate analyte ((13)C BPA) at a low method quantitation limit (MQL) of 0.1-0.2 ng/mL. In contrast to the free BPA method results and based on stringent accuracy, precision and confirmation criteria set for the MQLs of the method developed for total BPA, the MQL achieved in blood was 1.020-2.550 and 0.510-1.020 ng/mL in urine. These data showed higher MQLs than the desired MQLs of 0.5 ng/mL (blood) and 0.2 ng/mL (urine) with increased variability between analyses which demonstrates the importance of generating method validation data with each analysis. In contrast, the MQL achieved for (13)C BPA-G (monoglucuronide as a surrogate analyte in blood was 0.2-0.5 and 0.2 ng/mL in urine illustrating that the method is capable of meeting lower MQL requirements if the contribution from exogenous BPA can be well controlled. This method for the determination total BPA in human blood and urine is intended to be used in conjunction with the free BPA method ( 1) to obtain accurate and complete BPA biomonitoring data to support human exposure assessments.


Toxicological Sciences | 2008

Two-Generation Reproductive Toxicity Evaluation of Dietary 17β-Estradiol (E2; CAS No. 50-28-2) in CD-1 (Swiss) Mice

Rochelle W. Tyl; Christina B. Myers; Melissa C. Marr; Carol S. Sloan; Nora P. Castillo; M. Michael Veselica; John C. Seely; Stephen S. Dimond; John P. Van Miller; Ronald S. Shiotsuka; Gisela D. Stropp; John M. Waechter; Steven G. Hentges

No information exists on reproductive/developmental effects in mice exposed to dietary 17beta-estradiol (E2) over multiple generations. Therefore, under OECD Test Guideline 416 with enhancements, CD-1 mice (F0 generation, 25 mice/sex/group) were exposed to dietary E2 at 0, 0.001, 0.005, 0.05, 0.15, or 0.5 ppm ( approximately 0, 0.2, 1, 10, 30, or 100 mug E2/kg body weight/day) for 8 weeks prebreed, 2 weeks mating, approximately 3 weeks gestation, and 3 weeks lactation. At weaning, selected F1 offspring (F1 parents; 25/sex/group) and extra retained F1 males (one per litter) were exposed to the same dietary concentrations and durations as the F0 generation; study termination occurred at F2 weaning; F1/F2 weanlings (up to three per sex per litter) were necropsied with organs weighed. At 0.5 ppm, effects were increased F1/F2 perinatal loss, prolonged F0/F1 gestational length, reduced numbers of F2 (but not F1) litters/group, reduced F1/F2 litter sizes, accelerated vaginal patency (VP) and delayed preputial separation (PPS), increased uterus + cervix + vagina weights (UCVW) in F0/F1 adults and F1/F2 weanlings, and decreased testes and epididymides weights (TEW) in F1/F2 weanlings. At 0.15 ppm, effects were increased UCVW in F0/F1 adults and F1/F2 weanlings, accelerated VP, delayed PPS, and reduced TEW in F1/F2 weanlings. At 0.05 ppm, UCVW were increased in F1/F2 weanlings, and PPS was delayed only in extra retained F1 males. There were no biologically significant or treatment-related effects on F0/F1 parental body weights, feed consumption, or clinical observations, or on F0/F1 estrous cyclicity, F0/F1 andrology, or F1/F2 anogenital distance at any dose. The no observable effect level was 0.005 ppm E2 ( approximately 1 mug/kg/day). Therefore, the mouse model is sensitive to E2 by oral administration, with effects on reproductive development at doses of 10- 100 mug/kg/day.


Reproductive Toxicology | 2008

One-generation reproductive toxicity study of dietary 17β-estradiol (E2; CAS No. 50-28-2) in CD-1® (Swiss) mice

Rochelle W. Tyl; Christina B. Myers; Melissa C. Marr; Nora P. Castillo; M. Michael Veselica; Ronald L. Joiner; Stephen S. Dimond; John P. Van Miller; Gisela D. Stropp; John M. Waechter; Steven G. Hentges

There is no information on reproductive/developmental effects in mice from dietary estrogen. Therefore, 10 adult CD-1 mice/sex/group were administered dietary 17beta-estradiol (E2) at 0, 0.005, 0.05, 0.5, 2.5, 5, 10, and 50 ppm for 2-week prebreed, mating, gestation, lactation. F1 weanlings (3/sex/litter) were necropsied and 2/sex/litter were retained, with exposure, until vaginal patency (VP) or preputial separation (PPS) and then necropsied. Results included complete infertility at 2.5-50 ppm with normal mating indices. At 0.5 ppm (and above), F0 adult female uterus plus cervix plus vagina weights (UCVW) were increased. At 0.5 ppm: prolonged gestational length; increased F1 stillbirth index; reduced live birth index and litter size; decreased testes and epididymides weights at weaning; unaffected AGD on pnd 0 and 21; delayed PPS; increased undescended testes; unaffected prostate weight; accelerated VP; enlarged vaginas; fluid-filled uteri. At 0.05 ppm: no F0 reproductive effects, increased F1 weanling UCVW; delayed PPS. The NOEL was 0.005 ppm ( approximately 1 microg/kg/day).


Toxicology | 2015

Extensive metabolism and route-dependent pharmacokinetics of bisphenol A (BPA) in neonatal mice following oral or subcutaneous administration.

Dragomir I. Draganov; Dan A. Markham; Dieter Beyer; John M. Waechter; Stephen S. Dimond; Robert A. Budinsky; Ronald N. Shiotsuka; Stephanie A. Snyder; Kimberly D. Ehman; Steven G. Hentges

Orally administered bisphenol A (BPA) undergoes efficient first-pass metabolism to produce the inactive conjugates BPA-glucuronide (BPA-G) and BPA-sulfate (BPA-S). This study was conducted to evaluate the pharmacokinetics of BPA, BPA-G and BPA-S in neonatal mice following the administration of a single oral or subcutaneous (SC) dose. This study consisted of 3 phases: (1) mass-balance phase in which effective dose delivery procedures for oral or SC administration of (3)H-BPA to postnatal day three (PND3) mice were developed; (2) pharmacokinetic phase during which systemic exposure to total (3)H-BPA-derived radioactivity in female PND3 mice was established; and (3) metabolite profiling phase in which 50 female PND3 pups received either a single oral or SC dose of (3)H-BPA. Blood was collected from 5 pups/route/time-point at various times post-dosing, the blood plasma samples were pooled by group, and time-point and samples were profiled by HPLC with fraction collection. Fractions were analyzed for total radioactivity and data used to reconstruct radiochromatograms and to integrate individual peaks. The identity of the BPA, BPA-G, and BPA-S peaks was confirmed using authentic standards and LC-MS/MS analysis. The result of this study revealed that female PND3 mice have the capacity to metabolize BPA to BPA-G, BPA-S and other metabolites after both routes of administration. Systemic exposure to free BPA is route-dependent as the plasma concentrations were lower following oral administration compared to SC injection.


Journal of Chromatography B | 2015

Quantitative analysis of unconjugated and total bisphenol A in human urine using solid-phase extraction and UPLC–MS/MS: Method implementation, method qualification and troubleshooting

Brigitte Buscher; Dick van de Lagemaat; Wolfgang Gries; Dieter Beyer; Dan A. Markham; Robert A. Budinsky; Stephen S. Dimond; Rajesh V. Nath; Stephanie A. Snyder; Steven G. Hentges

The aim of the presented investigation was to document challenges encountered during implementation and qualification of a method for bisphenol A (BPA) analysis and to develop and discuss precautions taken to avoid and to monitor contamination with BPA during sample handling and analysis. Previously developed and published HPLC-MS/MS methods for the determination of unconjugated BPA (Markham et al. Journal of Analytical Toxicology, 34 (2010) 293-303) [17] and total BPA (Markham et al. Journal of Analytical Toxicology, 38 (2014) 194-203) [20] in human urine were combined and transferred into another laboratory. The initial method for unconjugated BPA was developed and evaluated in two independent laboratories simultaneously. The second method for total BPA was developed and evaluated in one of these laboratories to conserve resources. Accurate analysis of BPA at sub-ppb levels is a challenging task as BPA is a widely used material and is ubiquitous in the environment at trace concentrations. Propensity for contamination of biological samples with BPA is reported in the literature during sample collection, storage, and/or analysis. Contamination by trace levels of BPA is so pervasive that even with extraordinary care, it is difficult to completely exclude the introduction of BPA into biological samples and, consequently, contamination might have an impact on BPA biomonitoring data. The applied UPLC-MS/MS method was calibrated from 0.05 to 25ng/ml. The limit of quantification was 0.1ng/ml for unconjugated BPA and 0.2ng/ml for total BPA, respectively, in human urine. Finally, the method was applied to urine samples derived from 20 volunteers. Overall, BPA can be analyzed in human urine with acceptable recovery and repeatability if sufficient measures are taken to avoid contamination throughout the procedure from sample collection until UPLC-MS/MS analysis.


International Journal of Toxicology | 2001

Two-Week (Ten-Day) Inhalation Toxicity and Two-Week Recovery Study of Phenol Vapor in the Rat

Gary M. Hoffman; Brendan J. Dunn; Carl R. Morris; John H. Butala; Stephen S. Dimond; Ralph Gingell; John M. Waechter

The toxicity of phenol vapor was evaluated in male and female Fischer 344 rats (20/sex/group) via flow-past nose-only inhalation exposure. The test animals were exposed to target concentrations of 0 (air control), 0.5, 5.0, or 25 parts per million (ppm) of phenol in air for 6 hours/day, 5 days/week, for 2 weeks. High pressure liquid chromatography (HPLC) measurement of phenol test atmospheres determined mean (± standard deviation) analytical concentrations of 0.0 ± 0.0, 0.52 ± 0.078, 4.9 ± 0.57, and 25 ± 2.2 ppm, respectively. After 2 weeks of exposure, 10 test animals/sex/group were sampled for clinical chemistry and hematology parameters, and then sacrificed. Histopathological examination included the nasopharyngeal tissues, larynx, trachea, lungs with mainstem bronchi, kidney, fiver, and spleen. The remaining 10 animals/sex/group were retained for a 2-week recovery period. Recovery groups of animals were evaluated as described previously and then sacrificed. No signs of toxicity in clinical observations (including overt neurological signs), body weights, food consumption, clinical pathology, organ weights, macroscopic pathology or microscopic pathology were seen during the exposures or at either sacrifice interval. In conclusion, 2-week inhalation exposures to phenol vapor at concentrations up to and including 25 ppm did not produce any adverse effects.


Toxicology in Vitro | 2018

In vitro percutaneous absorption and metabolism of Bisphenol A (BPA) through fresh human skin

Frank Toner; Graham Allan; Stephen S. Dimond; John M. Waechter; Dieter Beyer

Bisphenol A (BPA) is a high production volume compound. It is mainly used as a monomer to make polymers for various applications including food-contact materials. The primary route of exposure to BPA in the general population is through oral intake (EFSA 2015) however, other potential sources of exposure have also been identified, such as dermal contact. In the present study, the percutaneous absorption through human skin has been investigated in an in vitro study according to OECD TG 428 (Skin Absorption: In Vitro Method). In order to investigate potential dermal BPA metabolism during absorption, radiolabelled BPA was applied to fresh, metabolically competent, human skin samples (ring labelled 14C BPA concentrations tested were 2.4, 12, 60 and 300mg/L). Measured as total radioactivity the mean absorbed dose (receptor compartment) ranged from 1.7-3.6% of the applied doses and the dermal delivery (epidermis+dermis+receptor compartment), sometimes also named bioavailable dose was 16-20% of the applied doses, with the majority of the radioactivity associated with epidermis compared to dermis and receptor fluid. No metabolism was observed in any of the epidermis samples; however some metabolism was observed in dermis and receptor fluid samples with formation of BPA-glucuronide and BPA-sulfate, and some polar metabolites.


Toxicological Sciences | 2002

Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats

Rochelle W. Tyl; Christina B. Myers; Melissa C. Marr; Brian F. Thomas; Alison Keimowitz; Dolores Brine; Milan Veselica; Patricia A. Fail; Tsai-Ying Chang; John C. Seely; Ronald L. Joiner; John H. Butala; Stephen S. Dimond; Sz Cagen; Ronald N. Shiotsuka; Gisela D. Stropp; John M. Waechter

Collaboration


Dive into the Stephen S. Dimond's collaboration.

Top Co-Authors

Avatar

Steven G. Hentges

American Chemistry Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge