Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen T. Keir is active.

Publication


Featured researches published by Stephen T. Keir.


Science | 2008

An Integrated Genomic Analysis of Human Glioblastoma Multiforme

D. Williams Parsons; Siân Jones; Xiaosong Zhang; Jimmy Lin; Rebecca J. Leary; Philipp Angenendt; Parminder Mankoo; Hannah Carter; I-Mei Siu; Gary L. Gallia; Alessandro Olivi; Roger E. McLendon; B. Ahmed Rasheed; Stephen T. Keir; Tatiana Nikolskaya; Yuri Nikolsky; Dana Busam; Hanna Tekleab; Luis A. Diaz; James Hartigan; Doug Smith; Robert L. Strausberg; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Hai Yan; Gregory J. Riggins; Darell D. Bigner; Rachel Karchin; Nick Papadopoulos; Giovanni Parmigiani

Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.


Science | 2011

The genetic landscape of the childhood cancer medulloblastoma

D. Williams Parsons; Meng Li; Xiaosong Zhang; Siân Jones; Rebecca J. Leary; Jimmy Lin; Simina M. Boca; Hannah Carter; Josue Samayoa; Chetan Bettegowda; Gary L. Gallia; George I. Jallo; Zev A. Binder; Yuri Nikolsky; James Hartigan; Doug Smith; Daniela S. Gerhard; Daniel W. Fults; Scott R. VandenBerg; Mitchel S. Berger; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Carlos Clara; Peter C. Phillips; Jane E. Minturn; Jaclyn A. Biegel; Alexander R. Judkins; Adam C. Resnick; Phillip B. Storm; Tom Curran

Genomic analysis of a childhood cancer reveals markedly fewer mutations than what is typically seen in adult cancers. Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.


Pediatric Blood & Cancer | 2007

The pediatric preclinical testing program: description of models and early testing results.

Peter J. Houghton; Christopher L. Morton; Chandra Tucker; Payne D; Edward Favours; Cole C; Richard Gorlick; Kolb Ea; Wei Zhang; Richard B. Lock; Hernan Carol; Mayamin Tajbakhsh; Reynolds Cp; John M. Maris; Joshua Courtright; Stephen T. Keir; Henry S. Friedman; Stopford C; Zeidner J; Jianwrong Wu; Tiebin Liu; Catherine A. Billups; Javed Khan; Ansher S; Junting Zhang; Malcolm A. Smith

The Pediatric Preclinical Testing Program (PPTP) is an initiative supported by the National Cancer Institute (NCI) to identify novel therapeutic agents that may have significant activity against childhood cancers. The PPTP has established panels of childhood cancer xenografts and cell lines to be used for in vivo and in vitro testing. These include panels for Wilms tumor, sarcomas (rhabdomyosarcoma, Ewing sarcoma, and osteosarcoma), neuroblastoma, brain tumors (glioblastoma, ependymoma, and medulloblastoma), rhabdoid tumors (CNS and renal), and acute lymphoblastic leukemia (ALL). Here, we describe the characteristics of the in vivo tumor panels and report results for the in vivo evaluation of two standard agents, vincristine and cyclophosphamide.


Nature Genetics | 2013

The integrated landscape of driver genomic alterations in glioblastoma

Veronique Frattini; Vladimir Trifonov; Joseph Chan; Angelica Castano; Marie Lia; Francesco Abate; Stephen T. Keir; Alan X. Ji; Pietro Zoppoli; Francesco Niola; Carla Danussi; Igor Dolgalev; Paola Porrati; Serena Pellegatta; Adriana Heguy; Gaurav Gupta; David Pisapia; Peter Canoll; Jeffrey N. Bruce; Roger E. McLendon; Hai Yan; Kenneth D. Aldape; Gaetano Finocchiaro; Tom Mikkelsen; Gilbert G. Privé; Darell D. Bigner; Anna Lasorella; Raul Rabadan; Antonio Iavarone

Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in LZTR1, encoding an adaptor of CUL3-containing E3 ligase complexes. Mutations and deletions disrupt LZTR1 function, which restrains the self renewal and growth of glioma spheres that retain stem cell features. Loss-of-function mutations in CTNND2 target a neural-specific gene and are associated with the transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of EGFR to several partners, with EGFR-SEPT14 being the most frequent functional gene fusion in human glioblastoma. EGFR-SEPT14 fusions activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition. These results provide insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention.


Pediatric Blood & Cancer | 2010

Initial Testing of the Aurora Kinase A Inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP)

John M. Maris; Christopher L. Morton; Richard Gorlick; E. Anders Kolb; Richard B. Lock; Hernan Carol; Stephen T. Keir; C. Patrick Reynolds; Min H. Kang; Jianrong Wu; Malcolm A. Smith; Peter J. Houghton

MLN8237 is a small molecule inhibitor of Aurora Kinase A (AURKA) that is currently in early phase clinical testing. AURKA plays a pivotal role in centrosome maturation and spindle formation during mitosis.


Molecular Cancer Therapeutics | 2005

Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair–deficient malignant glioma xenograft

C. Lynn Cheng; Stewart P. Johnson; Stephen T. Keir; Jennifer A. Quinn; Francis Ali-Osman; Csaba Szabó; Hongshan Li; Andrew L. Salzman; M. Eileen Dolan; Paul Modrich; Darell D. Bigner; Henry S. Friedman

Temozolomide is a DNA-methylating agent used in the treatment of malignant gliomas. In this study, we have examined if inhibition of poly(ADP-ribose) polymerase (PARP) could increase the cytotoxicity of temozolomide, particularly in cells deficient in DNA mismatch repair. Athymic mice, transplanted with mismatch repair–proficient [D-245 MG] or deficient [D-245 MG (PR)] xenografts, were treated with a combination of temozolomide and the PARP inhibitor, INO-1001. For the tumors deficient in mismatch repair, the most effective dose of INO-1001 was found to be 150 mg/kg, given i.p. thrice at 4-hour intervals with the first injection in combination with 262.5 mg/kg temozolomide (0.75 LD10). This dose of temozolomide by itself induced no partial regressions and a 4-day growth delay. In two separate experiments, the combination therapy increased the growth delay by 21.6 and 9.7 days with partial regressions observed in four of eight and three of nine mice, respectively. The addition of INO-1001 had a more modest, yet statistically significant, increase in tumor growth delay in the mismatch repair–proficient xenografts. In these experiments, mice were treated with a lower amount of temozolomide (88 mg/kg), which resulted in growth delays of 43.1 and 39.2 days. When the temozolomide treatment was in combination with 200 mg/kg INO-1001, there was an increase in growth delay to 48.9 and 45.7 days, respectively. These results suggest that inhibition of PARP may increase the efficacy of temozolomide in the treatment of malignant gliomas, particularly in tumors deficient in DNA mismatch repair.


Pediatric Blood & Cancer | 2008

Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program

E. Anders Kolb; Richard Gorlick; Peter J. Houghton; Christopher L. Morton; Richard B. Lock; Hernan Carol; C. Patrick Reynolds; John M. Maris; Stephen T. Keir; Catherine A. Billups; Malcolm A. Smith

SCH 717454 (19D12) is a fully human antibody directed against the insulin‐like growth factor 1 receptor (IGF‐1R), which is implicated in the growth and metastatic phenotype of a broad range of malignancies. The activity of SCH 717454 was evaluated against the in vitro and in vivo panels of the Pediatric Preclinical Testing Program (PPTP).


Pediatric Blood & Cancer | 2008

Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program

Peter J. Houghton; Christopher L. Morton; E. Anders Kolb; Richard Gorlick; Richard B. Lock; Hernan Carol; C. Patrick Reynolds; John M. Maris; Stephen T. Keir; Catherine A. Billups; Malcolm A. Smith

Rapamycin is a highly specific inhibitor of mTOR, a serine/threonine kinase that controls cap‐dependent translation. Here we report the activity of rapamycin against the in vitro and in vivo panels of the Pediatric Preclinical Testing Program (PPTP).


Molecular Carcinogenesis | 2007

A Novel Low-Molecular Weight Inhibitor of Focal Adhesion Kinase, TAE226, Inhibits Glioma Growth

Qing Shi; Anita B. Hjelmeland; Stephen T. Keir; Linhua Song; Sarah Wickman; Dowdy Jackson; Osamu Ohmori; Darell D. Bigner; Henry S. Friedman; Jeremy N. Rich

Glioblastomas are highly lethal cancers that resist current therapies. Novel therapies under development target molecular mechanisms that promote glioblastoma growth. In glioblastoma patient specimens, the non‐receptor tyrosine kinase focal adhesion kinase (FAK) is overexpressed. Upon growth factor receptor stimulation or integrin engagement, FAK is activated by phosphorylation on critical tyrosine residues. Activated FAK initiates a signal transduction cascade which promotes glioma growth and invasion by increasing cellular adhesion, migration, invasion, and proliferation. We find that human glioma cell lines express different levels of total FAK protein and activating phosphorylation of tyrosine residues Tyr397, Tyr861, and Tyr925. As all glioma cell lines examined expressed phosphorylated FAK, we examined the efficacy of a novel low‐molecular weight inhibitor of FAK, TAE226, against human glioma cell lines. TAE226 inhibited the phosphorylation of FAK as well as the downstream effectors AKT, extracellular signal‐related kinase, and S6 ribosomal protein in multiple glioma cell lines. TAE226 induced a concentration‐dependent decrease in cellular proliferation with an associated G2 cell cycle arrest in every cell line and an increase in apoptosis in a cell‐line‐specific manner. TAE226 also decreased glioma cell adhesion, migration, and invasion through an artificial extracellular matrix. Together, these data demonstrate the potential benefit of TAE226 for glioma therapy.


Pediatric Blood & Cancer | 2008

Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program

John M. Maris; Joshua Courtright; Peter J. Houghton; Christopher L. Morton; Richard Gorlick; E. Anders Kolb; Richard B. Lock; Mayamin Tajbakhsh; C. Patrick Reynolds; Stephen T. Keir; Jianrong Wu; Malcolm A. Smith

Inhibition of vascular endothelial growth factor mediated signaling shows promise as an antiangiogenic strategy for solid tumors. AZD2171 is a potent and relatively selective inhibitor of the vascular endothelial growth factor (VEGF) receptor family that is orally bioavailable. This study was designed to screen for antitumor activity of AZD2171 against the in vitro and in vivo childhood cancer preclinical models of the Pediatric Preclinical Testing Program (PPTP).

Collaboration


Dive into the Stephen T. Keir's collaboration.

Top Co-Authors

Avatar

Peter J. Houghton

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Malcolm A. Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John M. Maris

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Richard Gorlick

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Richard B. Lock

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hernan Carol

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

C. Patrick Reynolds

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge