Stephen T. Oh
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen T. Oh.
Blood | 2010
Stephen T. Oh; Erin F. Simonds; Carol Jones; Matthew B. Hale; Yury Goltsev; Kenneth D. Gibbs; Jason D. Merker; James L. Zehnder; Garry P. Nolan; Jason Gotlib
Dysregulated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling due to activation of tyrosine kinases is a common feature of myeloid malignancies. Here we report the first human disease-related mutations in the adaptor protein LNK, a negative regulator of JAK-STAT signaling, in 2 patients with JAK2 V617F-negative myeloproliferative neoplasms (MPNs). One patient exhibited a 5 base-pair deletion and missense mutation leading to a premature stop codon and loss of the pleckstrin homology (PH) and Src homology 2 (SH2) domains. A second patient had a missense mutation (E208Q) in the PH domain. BaF3-MPL cells transduced with these LNK mutants displayed augmented and sustained thrombopoietin-dependent growth and signaling. Primary samples from MPN patients bearing LNK mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34(+) early progenitors were abnormally abundant in both patients. These findings indicate that JAK-STAT activation due to loss of LNK negative feedback regulation is a novel mechanism of MPN pathogenesis.
The New England Journal of Medicine | 2013
Julia E. Maxson; Jason Gotlib; Daniel A. Pollyea; Angela G. Fleischman; Anupriya Agarwal; Christopher A. Eide; Daniel Bottomly; Beth Wilmot; Shannon McWeeney; Cristina E. Tognon; J. Blake Pond; Robert H. Collins; Basem Goueli; Stephen T. Oh; Michael W. Deininger; Bill H. Chang; Marc Loriaux; Brian J. Druker; Jeffrey W. Tyner
BACKGROUND The molecular causes of many hematologic cancers remain unclear. Among these cancers are chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL1-negative) chronic myeloid leukemia (CML), both of which are diagnosed on the basis of neoplastic expansion of granulocytic cells and exclusion of genetic drivers that are known to occur in other myeloproliferative neoplasms and myeloproliferative-myelodysplastic overlap neoplasms. METHODS To identify potential genetic drivers in these disorders, we used an integrated approach of deep sequencing coupled with the screening of primary leukemia cells obtained from patients with CNL or atypical CML against panels of tyrosine kinase-specific small interfering RNAs or small-molecule kinase inhibitors. We validated candidate oncogenes using in vitro transformation assays, and drug sensitivities were validated with the use of assays of primary-cell colonies. RESULTS We identified activating mutations in the gene encoding the receptor for colony-stimulating factor 3 (CSF3R) in 16 of 27 patients (59%) with CNL or atypical CML. These mutations segregate within two distinct regions of CSF3R and lead to preferential downstream kinase signaling through SRC family-TNK2 or JAK kinases and differential sensitivity to kinase inhibitors. A patient with CNL carrying a JAK-activating CSF3R mutation had marked clinical improvement after the administration of the JAK1/2 inhibitor ruxolitinib. CONCLUSIONS Mutations in CSF3R are common in patients with CNL or atypical CML and represent a potentially useful criterion for diagnosing these neoplasms. (Funded by the Leukemia and Lymphoma Society and others.).
Journal of Virology | 2001
Stephen T. Oh; Saturo Kyo; Laimonis A. Laimins
ABSTRACT High-risk human papillomaviruses (HPVs) immortalize keratinocytes by disrupting the retinoblastoma protein (Rb)/p16 pathway and activating telomerase. The E7 oncoprotein targets Rb, while the E6 oncoprotein induces telomerase activity in human keratinocytes. This study has examined the mechanism by which E6 activates telomerase. Expression of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, was found to be increased in keratinocytes stably expressing HPV type 16 E6, suggesting that E6 acts to increase hTERT transcription. hTERT expression and telomerase activity were activated to significantly higher levels in cells expressing both E6 and E7 than in cells expressing E6 alone. This indicates that E7 may augment E6-mediated activation of hTERT transcription. In transient-transfection assays using hTERT reporters, the induction of hTERT expression by E6 was found to be mediated by a 258-bp fragment of the hTERT promoter, proximal to the ATG initiation codon. Previous studies have demonstrated that overexpression of Myc can activate hTERT expression, suggesting that Myc may be a mediator of E6-mediated hTERT induction. However, in cells stably expressing E6, no strict correlation between the level of Myc and the activation of hTERT was found. Consistent with this observation, mutation of the two Myc binding sites in the hTERT promoter only modestly reduced responsiveness to E6 in transient reporter assays. This indicates that activation of Myc-dependent transcription is not essential for E6-mediated upregulation of hTERT expression. The hTERT promoter also contains five GC-rich elements that can bind Sp1. Mutation of these sites within the 258-bp fragment partially reduced hTERT induction by E6. However, when mutations in the Sp1 sites were combined with the mutated Myc binding sites, all activation by E6 was lost. This indicates that it is the combinatorial binding of factors to Myc and Sp1 cis elements that is responsible for hTERT induction by E6.
Leukemia | 2010
Animesh Pardanani; Terra L. Lasho; Christy Finke; Stephen T. Oh; Jason Gotlib; Ayalew Tefferi
LNK mutation analysis was performed in 61 patients with blast-phase myeloproliferative neoplasms (MPN); post-primary myelofibrosis (PMF) in 41, post-polycythemia vera in 11 and post-essential thrombocythemia in 9 patients. Paired chronic–blast phase sample analysis was possible in 26 cases. Nine novel heterozygous LNK mutations were identified in eight (13%) patients: six exon 2 missense mutations involving codons 215, 220, 223, 229 and 234, a synonymous mutation involving codon 208, and two deletion mutations involving exon 2 (685–691_delGGCCCCG) or exon 5 (955_delA); eight affected the pleckstrin homology (PH) domain. Mutations were detected in six (9.8%) blast-phase samples; chronic-phase sample analysis in four of these revealed the same mutation in one. Mutant LNK was detected in chronic-phase only in two patients and in both chronic–blast phases in one. JAK2V617F was documented in three and IDH2R140Q in one LNK-mutated patients. LNK mutations were not detected in 78 additional patients with chronic-phase MPN enriched for TET2, IDH, JAK2V617F, or MPL-mutated cases. We conclude that LNK mutations (i) target an exon 2 ‘hot spot’ in the PH domain spanning residues E208-D234, (ii) might be more prevalent in blast-phase PMF and (iii) are not mutually exclusive of other MPN-associated mutations but rarely occur in their presence in chronic-phase disease.
The New England Journal of Medicine | 2016
John S. Welch; Allegra A. Petti; Christopher A. Miller; Catrina C. Fronick; Michelle O’Laughlin; Robert S. Fulton; Richard Wilson; Jack Baty; Eric J. Duncavage; Bevan Tandon; Yi-Shan Lee; Lukas D. Wartman; Geoffrey L. Uy; Armin Ghobadi; Michael H. Tomasson; Iskra Pusic; Rizwan Romee; Todd A. Fehniger; Keith Stockerl-Goldstein; Ravi Vij; Stephen T. Oh; Camille N. Abboud; Amanda F. Cashen; Mark A. Schroeder; Meagan A. Jacoby; Sharon Heath; Kierstin Luber; M R Janke; Andrew Hantel; Niloufer Khan
BACKGROUND The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).
Science Translational Medicine | 2016
Rizwan Romee; Maximillian Rosario; Melissa M. Berrien-Elliott; Julia A. Wagner; Brea A. Jewell; Timothy Schappe; Jeffrey W. Leong; Sara Abdel-Latif; Stephanie Schneider; Sarah Willey; Carly Neal; Liyang Yu; Stephen T. Oh; Yi Shan Lee; Arend Mulder; Frans H.J. Claas; Megan A. Cooper; Todd A. Fehniger
Cytokine-induced differentiation of memory-like natural killer cells enhances antileukemia responses. Natural killers of leukemia Natural killer cells, part of the innate immune system, play a role in immune responses against exogenous pathogens as well as cancer. Recent studies have identified the existence of memory-like characteristics in some natural killer cells, and Romee et al. investigated these memory cells’ potential as a cancer therapy. The authors compared human natural killer memory cells to non-memory control cells, then demonstrated their effectiveness against myeloid leukemia models in vitro and in mice. They also performed a clinical trial in human patients with acute myeloid leukemia, where the natural killer memory-like cells again demonstrated antileukemia effects, some of which produced clinical remissions. Natural killer (NK) cells are an emerging cellular immunotherapy for patients with acute myeloid leukemia (AML); however, the best approach to maximize NK cell antileukemia potential is unclear. Cytokine-induced memory-like NK cells differentiate after a brief preactivation with interleukin-12 (IL-12), IL-15, and IL-18 and exhibit enhanced responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We hypothesized that memory-like NK cells exhibit enhanced antileukemia functionality. We demonstrated that human memory-like NK cells have enhanced interferon-γ production and cytotoxicity against leukemia cell lines or primary human AML blasts in vitro. Using mass cytometry, we found that memory-like NK cell functional responses were triggered against primary AML blasts, regardless of killer cell immunoglobulin-like receptor (KIR) to KIR-ligand interactions. In addition, multidimensional analyses identified distinct phenotypes of control and memory-like NK cells from the same individuals. Human memory-like NK cells xenografted into mice substantially reduced AML burden in vivo and improved overall survival. In the context of a first-in-human phase 1 clinical trial, adoptively transferred memory-like NK cells proliferated and expanded in AML patients and demonstrated robust responses against leukemia targets. Clinical responses were observed in five of nine evaluable patients, including four complete remissions. Thus, harnessing cytokine-induced memory-like NK cell responses represents a promising translational immunotherapy approach for patients with AML.
Cancer Research | 2013
Jeffrey W. Tyner; Wayne F. Yang; Armand Bankhead; Guang Fan; Luke B. Fletcher; Jade Bryant; Jason Glover; Bill H. Chang; Stephen E. Spurgeon; William H. Fleming; Tibor Kovacsovics; Jason Gotlib; Stephen T. Oh; Michael W. Deininger; Christian M. Zwaan; Monique L. den Boer; Marry M. van den Heuvel-Eibrink; Thomas O'Hare; Brian J. Druker; Marc Loriaux
Kinases are dysregulated in most cancers, but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here, we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of kinase targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options.
Journal of Virology | 2004
Stephen T. Oh; Michelle S. Longworth; Laimonis A. Laimins
ABSTRACT Many important functions have been attributed to the high-risk human papillomavirus (HPV) E6 and E7 proteins, including binding and degradation of p53 as well as interacting with Rb proteins. In contrast, the physiological roles of the low-risk E6 and E7 proteins remain unclear. Previous studies demonstrated that the high-risk E6 and E7 proteins also play roles in the productive life cycle by facilitating the maintenance of viral episomes (J. T. Thomas, W. G. Hubert, M. N. Ruesch, and L. A. Laimins, Proc. Natl. Acad. Sci. USA 96:8449-8454, 1999). In order to determine whether low-risk E6 or E7 is similarly necessary for the stable maintenance of episomes, HPV type 11 (HPV-11) genomes that contained translation termination mutations in E6 or E7 were constructed. Upon transfection into normal human keratinocytes, genomes in which E6 function was abolished were unable to be maintained episomally. Transfection of genomes containing substitution mutations in amino acids conserved in high- and low-risk HPV types suggested that multiple protein domains are involved in this process. Examination of cells transfected with HPV-11 genomes in which E7 function was inhibited were found to exhibit a more complex phenotype. At the second passage following transfection, mutant genomes were maintained as episomes but at significantly reduced levels than in cells transfected with the wild-type HPV-11 genome. Upon further passage in culture, however, the episomal forms of these E7 mutant genomes quickly disappeared. These findings identify important new functions for the low-risk E6 and E7 proteins in the episomal maintenance of low-risk HPV-11 genomes and suggest that they may act in a manner similar to that observed for the high-risk proteins.
Journal of Virology | 2001
Jennifer T. Thomas; Stephen T. Oh; Scott S. Terhune; Laimonis A. Laimins
ABSTRACT Infections by low-risk papillomavirus types, such as human papillomavirus (HPV) type 6 (HPV-6) and HPV-11, induce benign genital warts that rarely progress to malignancy. In contrast, lesions induced by high-risk HPV types have the potential to progress to cancer. Considerable information is available concerning the pathogenesis of high-risk HPV types, but little is known about the life cycle of low-risk HPV types. Although functionally distinct, both high- and low-risk virus types infect keratinocytes and induce virion production upon differentiation. This information suggests that they may share common mechanisms for regulating their productive life cycles. Using tissue culture methods developed to study high-risk HPV types, we examined the ability of HPV-11 to be stably maintained as episomes following transfection of normal human keratinocytes with cloned viral DNA. HPV-11 genomes were found to be maintained in keratinocytes for extended passages in cultures in 14 independent experiments involving transfection of cloned HPV-11 DNA. Interestingly, the HPV-11-positive cells exhibited an extended life span that averaged approximately twofold longer than that of control neomycin-transfected cells. In organotypic cultures, HPV-11-positive cells exhibited altered differentiation patterns, but the extent of disruption was less severe than that seen with high-risk HPV types. In addition, the amplification of HPV-11 DNA, as well as the induction of several viral messages, was observed following differentiation of transfected cells in semisolid media. To determine whether global changes in cellular gene expression induced by HPV-11 were similar to those observed with high-risk HPV-31 (Y. E. Chang and L. A. Laimins, J. Virol. 74:4174–4182, 2000), microarray analysis of 7,075 expressed sequences was performed. A spectrum of cellular genes different from that previously reported for HPV-31 was found to be activated or repressed by HPV-11. The expression of only a small set of genes was similarly altered by both high- and low-risk HPV types. This result suggests that different classes of HPVs have distinct effects on global cellular transcription patterns during infection. The methods described allow for a genetic analysis of HPV-11 in the context of its differentiation-dependent life cycle.
Expert Review of Hematology | 2010
Stephen T. Oh; Jason Gotlib
Dysregulated signaling is a hallmark of chronic myeloproliferative neoplasms (MPNs), as evidenced by the identification of the activating JAK2 V617F somatic mutation in almost all patients with polycythemia vera (PV) and 50–60% of essential thrombocythemia and primary myelofibrosis patients. These disorders are clinically distinct, raising the question of how a single mutation can result in such phenotypic diversity. Mouse models have demonstrated that the level of JAK2 V617F expression can modulate the phenotype, and clinical studies of JAK2 V617F allele burden have reported similar findings. It has also been hypothesized that one or more pre-JAK2 V617F events may modify the MPN phenotype. However, the molecular basis of JAK2 V617F-negative essential thrombocythemia and primary myelofibrosis remains largely unexplained. Mutations in the TET2 gene have been identified in both JAK2 V617F-positive and -negative MPNs and other myeloid neoplasms, but their functional and clinical significance have yet to be clarified. In addition, recent reports have identified a specific germline haplotype that increases the predisposition to MPNs. The role of inhibitory pathways (e.g., SOCS and LNK) in regulating JAK–STAT signaling in MPNs is being increasingly recognized. The implications of these findings and their clinical relevance are the focus of this article.