Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen T. Sawyer is active.

Publication


Featured researches published by Stephen T. Sawyer.


Journal of Clinical Investigation | 1987

Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin.

K Sawada; Sanford B. Krantz; J S Kans; E N Dessypris; Stephen T. Sawyer; A D Glick; C I Civin

Morphological and biochemical studies of human colony-forming units-erythroid (CFU-E) have been hindered by their extreme rarity. Since burst-forming units-erythroid (BFU-E) develop into CFU-E, we used normal human blood BFU-E to generate large numbers of highly purified CFU-E in vitro. Using density centrifugation, sheep erythrocyte rosetting, surface immunoglobulin-positive cell depletion, adherence to plastic, and negative panning with monoclonal antibodies, human blood BFU-E were purified from 0.017 to 0.368%, a 22-fold purification with a 43% yield. The panned cells were cultured in methylcellulose with recombinant erythropoietin (rEp) and conditioned medium for 9 d. These cells were then collected and CFU-E were further purified using adherence and density centrifugation. This yielded almost 10(7) erythroid colony forming cells with a purity of 70 +/- 18%. Analysis of these cells by light and electron microscopy showed 94% erythroid cells. The prominent cell was a primitive blast with high nuclear/cytoplasmic ratio, dispersed nuclear chromatin and a distinct large nucleolus. The relation between the number of erythroid colonies and the number of day 9 cells plated in plasma clots was a straight line through the origin with a maximum number of erythroid colonies at 1 U/ml of rEp and no erythroid colonies without rEp. Specific binding with 125I-rEp showed that 60% of the binding was inhibited by excess pure erythropoietin (Ep), but not by albumin, fetal calf serum, and a variety of growth factors or glycoproteins. By days 12-13 of cell culture, when the progenitor cells matured to late erythroblasts, specific binding markedly declined. In this study, human CFU-E have been isolated in sufficient purity to characterize the morphology of these rare cells and in sufficient numbers to measure specific binding of Ep.


Journal of Clinical Investigation | 1989

Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development.

K Sawada; Sanford B. Krantz; E N Dessypris; Stephen T. Koury; Stephen T. Sawyer

The presence of heterogeneous erythroid progenitor cells, contaminant cells, or serum may alter erythroid colony development in vitro. To obtain highly purified colony-forming units-erythroid (CFU-E), we cultured partially purified human blood burst-forming units-erythroid (BFU-E) in methylcellulose with recombinant human erythropoietin (rHuEPO) for 7 d and generated cells that consisted of 30-60% CFU-E, but no BFU-E. A serum-free medium was used that allowed development of the same number of erythroid colonies as serum containing medium, but with a greater percentage of larger colonies. This medium consisted of delipidated crystalline bovine serum albumin, iron saturated transferrin, lipid suspension, fibrinogen, thrombin, Iscoves modified Dulbeccos medium/F-12[HAM], and insulin plus rHuEPO. When CFU-E were cultured in a limiting dilution assay and the percentage of nonresponder wells was plotted against cell concentration, both serum-free cultures and serum-containing cultures yielded overlapping straight lines through the origin indicating that CFU-E development did not depend on accessory cells and that insulin acted directly on the CFU-E. Human recombinant interleukin 3 (IL-3) and/or granulocyte-macrophage colony-stimulating factor had no effect on CFU-E growth, while they markedly enhanced BFU-E growth. Physiological concentrations of recombinant human insulin-like growth factor I (IGF-I) enhanced CFU-E growth in the absence of insulin and, together with rHuEPO in serum-free medium, provided a plating efficiency equal to that of serum-containing medium. Limiting dilution analysis in serum-free medium with IGF-I showed a straight line through the origin indicating that IGF-I also acted directly on the CFU-E and not through an effect on accessory cells. These data demonstrate that CFU-E do not require accessory cells, but do require IGF-I and/or insulin which act directly on the CFU-E.


Journal of Clinical Investigation | 1988

Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropoietin by the placenta.

Mark J. Koury; Maurice C. Bondurant; Stanley E. Graber; Stephen T. Sawyer

Erythropoietin (EP) mRNA was measured in normal and anemic mice during fetal and postnatal development. Normal fetal livers at 14 d of gestation contained a low level of EP mRNA. By day 19 of gestation, no EP mRNA was detected in normal or anemic fetal livers or normal fetal kidneys, but anemic fetal kidneys had low levels of EP mRNA. Newborn through adult stage mice responded to anemia by accumulating renal and hepatic EP mRNA. However, total liver EP mRNA was considerably less than that of the kidneys. Juvenile animals, 1-4 wk old, were hyperresponsive to anemia in that they produced more EP mRNA than adults. Moreover, nonanemic juveniles had readily measured renal EP mRNA, whereas the adult level was at the lower limit of detection. Because of the very low level of fetal EP mRNA, placental transfer of EP was evaluated. When administered to the pregnant mouse, 125I-EP was transferred in significant amounts to the fetuses. These results indicate that in mice the kidney is the main organ of EP production at all stages of postnatal development and that adult kidney may also play some role in providing EP for fetal erythropoiesis via placental transfer of maternal hormone.


Journal of Biological Chemistry | 1999

Engagement of Gab1 and Gab2 in Erythropoietin Signaling

Amittha Wickrema; Shahab Uddin; Arun Sharma; Fei Chen; Yazan Alsayed; Sarfraz Ahmad; Stephen T. Sawyer; Gerald Krystal; Taolin Yi; Keigo Nishada; Masahiko Hibi; Toshio Hirano; Leonidas C. Platanias

Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3′-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3′-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses.


Journal of Biological Chemistry | 1997

Distinct Signaling from Stem Cell Factor and Erythropoietin in HCD57 Cells

Sarah M. Jacobs-Helber; Kalyani Penta; Zhenhong Sun; Amy E. Lawson; Stephen T. Sawyer

A recent report (Wu, H., Klingmuller, U., Besmer, P., and Lodish, H. F. (1995) Nature 377, 242-246) documents the interaction of the erythropoietin (EPO) receptor (EPOR) with the stem cell factor (SCF) receptor (c-KIT) and suggests that SCF acts through the EPOR. To elucidate the ability of SCF to affect the erythropoietin signaling pathway, we studied the effect of SCF on EPOR phosphorylation, SHC/ERK-1 activity, and cell proliferation and apoptosis in EPO-dependent HCD57 cells. Treatment of these cells with SCF resulted in phosphorylation of the EPOR. However, SCF-dependent phosphorylation of the EPOR did not initiate an EPO-like intracellular signal. SCF induced proliferation, SHC phosphorylation, and activation of ERK-1 but did not activate the JAK/STAT pathway. SCF stimulated SHC phosphorylation and ERK-1 activation independent of the EPOR in cells where the EPOR was down-regulated; the presence of the EPOR appeared to facilitate SCF activation of SHC and ERK-1. Furthermore, treatment of HCD57 cells with SCF increased cell number over a 3-day treatment, but apoptosis was observed in these cells. These data may illustrate two distinct pathways for erythroid cell proliferation and prevention of apoptosis in response to EPO, thereby providing a system to discriminate these intracellular signals.


Molecular and Cellular Biology | 1998

AP1 Regulation of Proliferation and Initiation of Apoptosis in Erythropoietin-Dependent Erythroid Cells

Sarah M. Jacobs-Helber; Amittha Wickrema; Michael J. Birrer; Stephen T. Sawyer

ABSTRACT The transcription factor AP1 has been implicated in the induction of apoptosis in cells in response to stress factors and growth factor withdrawal. We report here that AP1 is necessary for the induction of apoptosis following hormone withdrawal in the erythropoietin (EPO)-dependent erythroid cell line HCD57. AP1 DNA binding activity increased upon withdrawal of HCD57 cells from EPO. A dominant negative AP1 mutant rendered these cells resistant to apoptosis induced by EPO withdrawal and blocked the downregulation of Bcl-XL. JunB is a major binding protein in the AP1 complex observed upon EPO withdrawal; JunB but not c-Jun was present in the AP1 complex 3 h after EPO withdrawal in HCD57 cells, with a concurrent increase injunB message and protein. Furthermore, analysis of AP1 DNA binding activity in an apoptosis-resistant subclone of HCD57 revealed a lack of induction in AP1 DNA binding activity and no change injunB mRNA levels upon EPO withdrawal. In addition, we determined that c-Jun and AP1 activities correlated with EPO-induced proliferation and/or protection from apoptosis. AP1 DNA binding activity increased over the first 3 h following EPO stimulation of HCD57 cells, and suppression of AP1 activity partially inhibited EPO-induced proliferation. c-Jun but not JunB was present in the AP1 complex 3 h after EPO addition. These results implicate AP1 in the regulation of proliferation and survival of erythroid cells and suggest that different AP1 factors may play distinct roles in both triggering apoptosis (JunB) and protecting erythroid cells from apoptosis (c-Jun).


Journal of Biological Chemistry | 1996

Association of JAK2 and STAT5 with Erythropoietin Receptors ROLE OF RECEPTOR PHOSPHORYLATION IN ERYTHROPOIETIN SIGNAL TRANSDUCTION

Stephen T. Sawyer; Kalyani Penta

Cytokine receptors act at least partially by associating with Janus tyrosine protein kinases at the conserved box one motif of the receptor. These receptor-associated kinases then activate STAT transcription factors through phosphorylation. We found that the 78-kDa erythropoietin receptor (EPOR), a highly modified form of the 66-kDa receptor which is abundant in HCD57 cells, was phosphorylated on serine residues without EPO stimulation. Coprecipitation experiments showed the 78-kDa EPOR but not the more abundant 66-kDa EPOR was associated with JAK2, a Janus protein kinase, in both the presence and absence of EPO. Solubilized 78-kDa EPOR bound to purified, genetically engineered JAK2 better than the 62-76-kDa receptor proteins, and additional phosphorylation of tyrosine residues further increased the binding of the 78-kDa EPOR to JAK2-agarose beads. STAT5 DNA binding was activated by 10-100-fold lower concentrations of EPO in HCD57 cells than in primary erythroid cells, and STAT5 associated with the EPOR in an EPO-dependent manner. These data suggest that phosphorylation of either serine or tyrosine residues of the EPOR can enhance the association of the receptor with JAK2, possibly increasing the sensitivity to EPO.


Methods in Enzymology | 1987

[30] Large-scale procurement of erythropoietin-responsive erythroid cells: Assay for biological activity of erythropoietin

Stephen T. Sawyer; Mark J. Koury; Maurice C. Bondurant

Publisher Summary The method for procuring a large population of synchronized, EP-responsive erythroid cells allows the investigation of the mechanism by which EP induces the maturation of erythroblasts. This had not been possible due to limitations of previously used cell systems. Continuous erythroid cell lines, such as the Friend erythroleukemia cells, have been used extensively in the study of erythroid maturation. The purity and developmental synchrony of these cells are well suited for the study of some events in erythroid maturation. The EP-responsive cells in these tissues are usually a minority of the cell population and are at many stages of development. This cellular impurity and lack of developmental synchrony seriously compromise the interpretation of data gathered using these tissues as a model for erythroid maturation. In addition these cells have been used to study EP-dependent transcriptional regulation of globin message and the organization of chromatin around the globin gene during differentiation.


Journal of Hematotherapy & Stem Cell Research | 2000

State-of-the-Art Review: Unraveling Distinct Intracellular Signals That Promote Survival and Proliferation: Study of Erythropoietin, Stem Cell Factor, and Constitutive Signaling in Leukemic Cells

Stephen T. Sawyer; Sarah M. Jacobs-Helber

This review summarizes selected recent studies of the intracellular signals that allow erythroid cells to survive and proliferate under the control of erythropoietin (EPO) and alteration in signals that contribute to EPO-independent survival and proliferation. The hypothesis explored is that the proliferation and survival signals are distinct and can be separately studied with the proper cell lines and growth factor stimulation. The anti- and pro-apoptotic proteins Bcl-XL and BAD are highly implicated in EPO-dependent survival of erythroid cells. Stat5 activity appears to be upstream of Bcl-XL expression such that pathologic, constitutive activation of Stat5 may be a common event in leukemic cells that become resistant to apoptosis by constitutive expression of Bcl-XL. Other signals apparently also control the expression of Bcl-XL, such as the expression of JunB which seem to be required to suppress Bcl-XL expression when EPO is withdrawn. Apoptosis may also be triggered by inactivation of Bcl-XL by BAD. Dephosphorylation of BAD as a result of withdrawal of survival factors converts prosurvival BAD to proapoptotic BAD. Phosphorylation of BAD at the serine 112 residue seems critical to promoting survival. Constitutive activation of a kinase that phosphorylates BAD serine 112 may, therefore, contribute to resistance to apoptosis in leukemic cells. We describe the resistance of erythroleukemic cells to apoptosis induced by EPO withdrawal apparently caused by constitutive BAD phosphorylation. The resistance to apoptosis in these cells is reversed by treatment with the PI3-kinase inhibitor, LY294002, suggesting that resistance to apoptosis in these cells likely results from constitutive P13-kinase that is an upstream activator of an S-112 BAD kinase. The MAP kinase cascade is apparently active in EPO-dependent and stem cell factor (SCF)-dependent proliferation but not survival. In addition, autocrine tumor necrosis factor-a! (TNF-alpha) may also be a proliferation factor not affecting survival. P13-kinase seems to be required for full EPO-dependent proliferation but is not required for EPO-dependent survival (but it can promote survival when activated).


Journal of Biological Chemistry | 2002

Role of JunB in Erythroid Differentiation

Sarah M. Jacobs-Helber; Randolph M. Abutin; Cuixia Tian; Maurice C. Bondurant; Amittha Wickrema; Stephen T. Sawyer

The role of junB as a regulator of erythroid cell survival, proliferation, and differentiation was tested by controlled expression of JunB in the erythropoietin (EPO)-dependent erythroleukemia cell line HCD57. JunB induced erythroid differentiation as evidenced by increased expression of the erythroid-specific proteins β-globin, spectrin-α, and TER-119. Expression of JunB for at least 48 h was required for the differentiated phenotype to emerge. Differentiation was accompanied by a slower rate of proliferation and an increase in the expression of the cell cycle inhibitory protein p27. p27 protein expression increased due to reduced turnover without changes in transcription, indicating global changes in cell physiology following JunB induction. JunB expression was also studied in mouse and human primary erythroid cells. JunB expression increased immediately in both primary mouse cells and HCD57 cells treated with EPO and quickly returned to base-line levels, followed by a secondary rise in JunB in primary erythroid cells, but not in HCD57 cells, 36–48 h later. This result suggested that the initial EPO-dependent JunB induction was not sufficient to induce differentiation, but that the late EPO-independent JunB expression in primary erythroid cells was necessary for differentiation. This study suggests that JunB is an important regulator of erythroid differentiation.

Collaboration


Dive into the Stephen T. Sawyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Ryan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Mark J. Koury

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel P. Bailey

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge