Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen W. Scherer is active.

Publication


Featured researches published by Stephen W. Scherer.


Nature | 2006

Global variation in copy number in the human genome

Richard Redon; Shumpei Ishikawa; Karen R. Fitch; Lars Feuk; George H. Perry; T. Daniel Andrews; Heike Fiegler; Michael H. Shapero; Andrew R. Carson; Wenwei Chen; Eun Kyung Cho; Stephanie Dallaire; Jennifer L. Freeman; Juan R. González; Mònica Gratacòs; Jing Huang; Dimitrios Kalaitzopoulos; Daisuke Komura; Jeffrey R. MacDonald; Christian R. Marshall; Rui Mei; Lyndal Montgomery; Keunihiro Nishimura; Kohji Okamura; Fan Shen; Martin J. Somerville; Joelle Tchinda; Armand Valsesia; Cara Woodwark; Fengtang Yang

Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.


Nature Genetics | 2004

Detection of large-scale variation in the human genome

A. John Iafrate; Lars Feuk; Miguel Rivera; Marc Listewnik; Patricia K. Donahoe; Ying Qi; Stephen W. Scherer; Charles Lee

We identified 255 loci across the human genome that contain genomic imbalances among unrelated individuals. Twenty-four variants are present in > 10% of the individuals that we examined. Half of these regions overlap with genes, and many coincide with segmental duplications or gaps in the human genome assembly. This previously unappreciated heterogeneity may underlie certain human phenotypic variation and susceptibility to disease and argues for a more dynamic human genome structure.


PLOS Biology | 2007

The Diploid Genome Sequence of an Individual Human

Samuel Levy; Granger Sutton; Pauline C. Ng; Lars Feuk; Aaron L. Halpern; Brian Walenz; Nelson Axelrod; Jiaqi Huang; Ewen F. Kirkness; Gennady Denisov; Yuan Lin; Jeffrey R. MacDonald; Andy Wing Chun Pang; Mary Shago; Timothy B. Stockwell; Alexia Tsiamouri; Vineet Bafna; Vikas Bansal; Saul Kravitz; Dana Busam; Karen Beeson; Tina McIntosh; Karin A. Remington; Josep F. Abril; John Gill; Jon Borman; Yu-Hui Rogers; Marvin Frazier; Stephen W. Scherer; Robert L. Strausberg

Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.


Nature | 2010

Origins and functional impact of copy number variation in the human genome

Donald F. Conrad; Dalila Pinto; Richard Redon; Lars Feuk; Omer Gokcumen; Yujun Zhang; Jan Aerts; T. Daniel Andrews; C. Barnes; Peter J. Campbell; Tomas Fitzgerald; Min Hu; Chun Hwa Ihm; Kati Kristiansson; Daniel G. MacArthur; Jeffrey R. MacDonald; Ifejinelo Onyiah; Andy Wing Chun Pang; Samuel Robson; Kathy Stirrups; Armand Valsesia; Klaudia Walter; John T. Wei; Chris Tyler-Smith; Nigel P. Carter; Charles Lee; Stephen W. Scherer

Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.


American Journal of Human Genetics | 2010

Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.

David T. Miller; Adam Mp; Swaroop Aradhya; Leslie G. Biesecker; Arthur R. Brothman; Nigel P. Carter; Deanna M. Church; John A. Crolla; Evan E. Eichler; Charles J. Epstein; W. Andrew Faucett; Lars Feuk; Jan M. Friedman; Ada Hamosh; Laird G. Jackson; Erin B. Kaminsky; Klaas Kok; Ian D. Krantz; Robert M. Kuhn; Charles Lee; James Ostell; Carla Rosenberg; Stephen W. Scherer; Nancy B. Spinner; Dimitri J. Stavropoulos; James Tepperberg; Erik C. Thorland; Joris Vermeesch; Darrel Waggoner; Michael S. Watson

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.


American Journal of Human Genetics | 2008

Structural Variation of Chromosomes in Autism Spectrum Disorder

Christian R. Marshall; Abdul Noor; John B. Vincent; Anath C. Lionel; Lars Feuk; Jennifer Skaug; Mary Shago; Rainald Moessner; Dalila Pinto; Yan Ren; Bhooma Thiruvahindrapduram; Andreas Fiebig; Stefan Schreiber; Jan M. Friedman; Cees Ketelaars; Yvonne J. Vos; Can Ficicioglu; Susan J. Kirkpatrick; Rob Nicolson; Leon Sloman; Anne Summers; Clare A. Gibbons; Ahmad S. Teebi; David Chitayat; Rosanna Weksberg; Ann Thompson; Cathy Vardy; Vicki Crosbie; Sandra Luscombe; Rebecca Baatjes

Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.


Cell | 1996

MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma

Kolja Eppert; Stephen W. Scherer; Hilmi Ozcelik; Rosa Pirone; Pamela A. Hoodless; Hyeja Kim; Lap-Chee Tsui; Bharati Bapat; Steven Gallinger; Irene L. Andrulis; Gerald H. Thomsen; Jeffrey L. Wrana; Liliana Attisano

The MAD-related (MADR) family of proteins are essential components in the signaling pathways of serine/threonine kinase receptors for the transforming growth factor beta (TGFbeta) superfamily. We demonstrate that MADR2 is specifically regulated by TGFbeta and not bone morphogenetic proteins. The gene for MADR2 was found to reside on chromosome 18q21, near DPC4, another MADR protein implicated in pancreatic cancer. Mutational analysis of MADR2 in sporadic tumors identified four missense mutations in colorectal carcinomas, two of which display a loss of heterozygosity. Biochemical and functional analysis of three of these demonstrates that the mutations are inactivating. These findings suggest that MADR2 is a tumor suppressor and that mutations acquired in colorectal carcinomas may function to disrupt TGFbeta signaling.


Nature Genetics | 2002

Mutations in SUFU predispose to medulloblastoma

Michael D. Taylor; Ling Liu; Corey Raffel; Chi-chung Hui; Todd G. Mainprize; Xiaoyun Zhang; Ron Agatep; Sharon Chiappa; Luzhang Gao; Anja Lowrance; Aihau Hao; Alisa M. Goldstein; Theodora Stavrou; Stephen W. Scherer; Wieslaw T. Dura; Brandon J. Wainwright; Jeremy A. Squire; James T. Rutka; David Hogg

The sonic hedgehog (SHH) signaling pathway directs the embryonic development of diverse organisms and is disrupted in a variety of malignancies. Pathway activation is triggered by binding of hedgehog proteins to the multipass Patched-1 (PTCH) receptor, which in the absence of hedgehog suppresses the activity of the seven-pass membrane protein Smoothened (SMOH). De-repression of SMOH culminates in the activation of one or more of the GLI transcription factors that regulate the transcription of downstream targets. Individuals with germline mutations of the SHH receptor gene PTCH are at high risk of developmental anomalies and of basal-cell carcinomas, medulloblastomas and other cancers (a pattern consistent with nevoid basal-cell carcinoma syndrome, NBCCS). In keeping with the role of PTCH as a tumor-suppressor gene, somatic mutations of this gene occur in sporadic basal-cell carcinomas and medulloblastomas. We report here that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele. Several of these mutations encode truncated proteins that are unable to export the GLI transcription factor from nucleus to cytoplasm, resulting in the activation of SHH signaling. SUFU is a newly identified tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway through a newly identified mechanism.


Nature Genetics | 2001

A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2

Shinji Hadano; Collette K. Hand; Hitoshi Osuga; Yoshiko Yanagisawa; Asako Otomo; Rebecca S. Devon; Natsuki Miyamoto; Junko Showguchi-Miyata; Yoshinori Okada; Roshni R. Singaraja; Denise A. Figlewicz; Thomas J. Kwiatkowski; Betsy A. Hosler; Tally Sagie; Jennifer Skaug; Jamal Nasir; Robert H. Brown; Stephen W. Scherer; Guy A. Rouleau; Michael R. Hayden; Joh-E Ikeda

Amyotrophic lateral sclerosis 2 (ALS2) is an autosomal recessive form of juvenile ALS and has been mapped to human chromosome 2q33. Here we report the identification of two independent deletion mutations linked to ALS2 in the coding exons of the new gene ALS2. These deletion mutations result in frameshifts that generate premature stop codons. ALS2 is expressed in various tissues and cells, including neurons throughout the brain and spinal cord, and encodes a protein containing multiple domains that have homology to RanGEF as well as RhoGEF. Deletion mutations are predicted to cause a loss of protein function, providing strong evidence that ALS2 is the causative gene underlying this form of ALS.


Nature | 2008

Copy-number variations associated with neuropsychiatric conditions

Edwin H. Cook; Stephen W. Scherer

Neuropsychiatric conditions such as autism and schizophrenia have long been attributed to genetic alterations, but identifying the genes responsible has proved challenging. Microarray experiments have now revealed abundant copy-number variation — a type of variation in which stretches of DNA are duplicated, deleted and sometimes rearranged — in the human population. Genes affected by copy-number variation are good candidates for research into disease susceptibility. The complexity of neuropsychiatric genetics, however, dictates that assessment of the biomedical relevance of copy-number variants and the genes that they affect needs to be considered in an integrated context.

Collaboration


Dive into the Stephen W. Scherer's collaboration.

Top Co-Authors

Avatar

Christian R. Marshall

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anath C. Lionel

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Susan Walker

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Dalila Pinto

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Merico

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Berge A. Minassian

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John B. Vincent

Centre for Addiction and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge