Stephen Wanyonyi
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Wanyonyi.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011
Stephen Wanyonyi; Julie A. Sharp; Elie Khalil; Christophe Lefevre; Kevin R. Nicholas
Cathelicidins secreted in milk may be central to autocrine feedback in the mammary gland for optimal development in addition to conferring innate immunity to both the mammary gland and the neonate. This study exploits the unique reproductive strategy of the tammar wallaby (Macropus eugenii) model to analyse differential splicing of cathelicidin genes and to evaluate the bactericidal activity and effect of the protein on mammary epithelial cell proliferation. Two linear peptides, Con73 and Con218, derived from the heterogeneous carboxyl end of cathelicidin transcripts, MaeuCath1 and MaeuCath7 respectively, were evaluated for antimicrobial activity. Both Con73 and Con218 significantly inhibited the growth of Staphylococcus aureus, Pseudomonas aureginosa, Enterococcus faecalis and Salmonella enterica. In addition both MaeuCath1 and MaeuCath7 stimulated proliferation of primary tammar wallaby mammary epithelial cells (WallMEC). Lactation-phase specific alternate spliced transcripts were determined for MaeuCath1 showing utilisation of both antimicrobial and proliferative functions are required by the mammary gland and the suckled young. The study has shown for the first time that temporal regulation of milk cathelicidins may be crucial in antimicrobial protection of the mammary gland and suckled young and mammary cell proliferation.
Diabetes | 2012
Nicky Konstantopoulos; Juan Carlos Molero; Sean L. McGee; Briana Spolding; Timothy Connor; Melissa de Vries; Stephen Wanyonyi; R. Fahey; Shona Morrison; Courtney Swinton; Sharon Jones; Adrian Cooper; Lucía García-Guerra; Victoria C. Foletta; Guy Krippner; Sofianos Andrikopoulos; Ken Walder
We previously used Gene Expression Signature technology to identify methazolamide (MTZ) and related compounds with insulin sensitizing activity in vitro. The effects of these compounds were investigated in diabetic db/db mice, insulin-resistant diet-induced obese (DIO) mice, and rats with streptozotocin (STZ)-induced diabetes. MTZ reduced fasting blood glucose and HbA1c levels in db/db mice, improved glucose tolerance in DIO mice, and enhanced the glucose-lowering effects of exogenous insulin administration in rats with STZ-induced diabetes. Hyperinsulinemic-euglycemic clamps in DIO mice revealed that MTZ increased glucose infusion rate and suppressed endogenous glucose production. Whole-body or cellular oxygen consumption rate was not altered, suggesting MTZ may inhibit glucose production by different mechanism(s) to metformin. In support of this, MTZ enhanced the glucose-lowering effects of metformin in db/db mice. MTZ is known to be a carbonic anhydrase inhibitor (CAI); however, CAIs acetazolamide, ethoxyzolamide, dichlorphenamide, chlorthalidone, and furosemide were not effective in vivo. Our results demonstrate that MTZ acts as an insulin sensitizer that suppresses hepatic glucose production in vivo. The antidiabetic effect of MTZ does not appear to be a function of its known activity as a CAI. The additive glucose-lowering effect of MTZ together with metformin highlights the potential utility for the management of type 2 diabetes.
Current Hypertension Reports | 2017
Sunil K. Panchal; Stephen Wanyonyi; Lindsay Brown
Trace metals play an important role in the proper functioning of carbohydrate and lipid metabolism. Some of the trace metals are thus essential for maintaining homeostasis, while deficiency of these trace metals can cause disorders with metabolic and physiological imbalances. This article concentrates on three trace metals (selenium, vanadium, and chromium) that may play crucial roles in controlling blood glucose concentrations possibly through their insulin-mimetic effects. For these trace metals, the level of evidence available for their health effects as supplements is weak. Thus, their potential is not fully exploited for the target of metabolic syndrome, a constellation that increases the risk for cardiovascular disease and type 2 diabetes. Given that the prevalence of metabolic syndrome is increasing throughout the world, a simpler option of interventions with food supplemented with well-studied trace metals could serve as an answer to this problem. The oxidation state and coordination chemistry play crucial roles in defining the responses to these trace metals, so further research is warranted to understand fully their metabolic and cardiovascular effects in human metabolic syndrome.
Seminars in Cell & Developmental Biology | 2012
Kevin R. Nicholas; Julie A. Sharp; Ashalyn Watt; Stephen Wanyonyi; Tamsyn M. Crowley; Meagan J. Gillespie; Christophe Lefevre
The role of milk extends beyond simply providing nutrition to the suckled young. Milk has a comprehensive role in programming and regulating growth and development of the suckled young, and provides a number of potential autocrine factors so that the mammary gland functions appropriately during the lactation cycle. This central role of milk is best studied in animal models such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Consequently, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland since inappropriate timing of these signalling events may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. Milk proteins play a significant role in these processes by providing timely presentation of signalling molecules and antibacterial protection for the young and the mammary gland at times when there is increased susceptibility to infection. This review describes studies exploiting the unique reproductive strategy of the tammar wallaby to investigate the role of several proteins secreted at specific times during the lactation cycle and that are correlated with potential roles in the young and mammary gland. Interestingly, alternative splicing of some milk protein genes has been utilised by the mammary gland to deliver domain-specific functions at specific times during lactation.
Matrix Biology | 2013
Stephen Wanyonyi; Christophe Lefevre; Julie A. Sharp; Kevin R. Nicholas
Asynchronous concurrent lactation (ACL) is an extreme lactation strategy in macropod marsupials including the tammar wallaby, that may hold the key to understanding local control of mammary epithelial cell function. Marsupials have a short gestation and a long lactation consisting of three phases; P2A, P2B and P3, representing early, mid and late lactation respectively and characterised by profound changes in milk composition. A lactating tammar is able to concurrently produce phase 2A and 3 milk from adjacent glands in order to feed a young newborn and an older sibling at heel. Physiological effectors of ACL remain unknown and in this study the extracellular matrix (ECM) is investigated for its role in switching mammary phenotypes between phases of tammar wallaby lactation. Using the level of expression of the genes for the phase specific markers tELP, tWAP, and tLLP-B representing phases 2A, 2B and 3 respectively we show for the first time that tammar wallaby mammary epithelial cells (WallMECs) extracted from P2B acquire P3 phenotype when cultured on P3 ECM. Similarly P2A cells acquire P2B phenotype when cultured on P2B ECM. We further demonstrate that changes in phase phenotype correlate with phase-specific changes in ECM composition. This study shows that progressive changes in ECM composition in individual mammary glands provide a local regulatory mechanism for milk protein gene expression thereby enabling the mammary glands to lactate independently.
Biochemical and Biophysical Research Communications | 2009
Hua Su; Jennifer H. Gunter; Melissa de Vries; Timothy Connor; Stephen Wanyonyi; Felicity S. Newell; David Segal; Juan Carlos Molero; Ofer Reizes; Johannes B. Prins; Louise J. Hutley; Ken Walder; Jonathan P. Whitehead
We previously described a putative role for inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, in lipid accumulation. Here we present data which demonstrate that IMPDH activity is required for differentiation of preadipocytes into mature, lipid-laden adipocytes and maintenance of adipose tissue mass. In 3T3-L1 preadipocytes inhibition of IMPDH with mycophenolic acid (MPA) reduced intracellular GTP levels by 60% (p<0.05) and blocked adipogenesis (p<0.05). Co-treatment with guanosine, a substrate in the salvage pathway of nucleotide biosynthesis, restored GTP levels and adipogenesis demonstrating the specificity of these effects. Treatment of diet-induced obese mice with mycophenolate mofetil (MMF), the prodrug of MPA, for 28 days did not affect food intake or lean body mass but reduced body fat content (by 36%, p=0.002) and adipocyte size (p=0.03) and number. These data suggest that inhibition of IMPDH may represent a novel strategy to reduce adipose tissue mass.
General and Comparative Endocrinology | 2017
Julie A. Sharp; Stephen Wanyonyi; Vengama Modepalli; Ashalyn Watt; Sanjana Kuruppath; Lyn A. Hinds; Amit Kumar; Helen E. Abud; Christophe Lefevre; Kevin R. Nicholas
It is now clear that milk has multiple functions; it provides the most appropriate nutrition for growth of the newborn, it delivers a range of bioactives with the potential to stimulate development of the young, it has the capacity to remodel the mammary gland (stimulate growth or signal cell death) and finally milk can provide protection from infection and inflammation when the mammary gland is susceptible to these challenges. There is increasing evidence to support studies using an Australian marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique model to study milk bioactives. Reproduction in the tammar wallaby is characterized by a short gestation, birth of immature young and a long lactation. All the major milk constituents change substantially and progressively during lactation and these changes have been shown to regulate growth and development of the tammar pouch young and to have roles in mammary gland biology. This review will focus on recent reports examining the control of lactation in the tammar wallaby and the timed delivery of milk bioactivity.
Nutrients | 2017
Stephen Wanyonyi; Ryan du Preez; Lindsay Brown; Nicholas A. Paul; Sunil K. Panchal
The red seaweed, Kappaphycus alvarezii, was evaluated for its potential to prevent signs of metabolic syndrome through use as a whole food supplement. Major biochemical components of dried Kappaphycus are carrageenan (soluble fiber ~34.6%) and salt (predominantly potassium (K) 20%) with a low overall energy content for whole seaweed. Eight to nine week old male Wistar rats were randomly divided into three groups and fed for 8 weeks on a corn starch diet, a high-carbohydrate, high-fat (H) diet, alone or supplemented with a 5% (w/w) dried and milled Kappaphycus blended into the base diet. H-fed rats showed symptoms of metabolic syndrome including increased body weight, total fat mass, systolic blood pressure, left ventricular collagen deposition, plasma triglycerides, and plasma non-esterified fatty acids along with fatty liver. Relative to these obese rats, Kappaphycus-treated rats showed normalized body weight and adiposity, lower systolic blood pressure, improved heart and liver structure, and lower plasma lipids, even in presence of H diet. Kappaphycus modulated the balance between Firmicutes and Bacteroidetes in the gut, which could serve as the potential mechanism for improved metabolic variables; this was accompanied by no damage to the gut structure. Thus, whole Kappaphycus improved cardiovascular, liver, and metabolic parameters in obese rats.
Developmental and Comparative Immunology | 2013
Stephen Wanyonyi; Christophe Lefevre; Julie A. Sharp; Kevin R. Nicholas
We have previously shown that the gene for MaeuCath1, a cathelicidin secreted in wallaby milk is alternately spliced into two variants, MaeuCath1a and MaeuCath1b which are temporally regulated in order to provide antimicrobial protection to the newborn and stimulate mammary growth, respectively. The current study investigated the extracellular matrix (ECM) for its regulatory role in MaeuCath1 gene expression. Reverse transcription qPCR using RNA isolated from mammary epithelial cells (WallMEC) cultured on ECM showed that ECM regulates MaeuCath1a gene expression in a lactation phase-dependent manner. Luciferase reporter-based assays and in silico analysis of deletion fragments of the 2245bp sequence upstream of the translation start site identified ECM-dependent positive regulatory activity in the -709 to -15 region and repressor activity in the -919 to -710 region. Electrophoretic Gel Mobility Shift Assays (EMSA) using nuclear extract from ECM-treated WallMEC showed differential band shift in the -839 to -710 region.
Nutrients | 2018
Oliver John; Stephen Wanyonyi; Peter Mouatt; Sunil K. Panchal; Lindsay Brown
Garcinia humilis is a fruit known as achachairú. It is native to South American countries such as Bolivia, Peru, and Brazil, but it is also cultivated as achacha in northern Australia. The aim of this study was to determine the phytochemicals in achacha rind and pulp and to investigate these components as potential treatments for the symptoms of metabolic syndrome. Both rind and pulp contain procyanidins and citric acid rather than hydroxycitric acid. Male Wistar rats (8–9 weeks old) were fed with either high-carbohydrate, high-fat, or corn starch diets for 16 weeks. Intervention groups were fed with either diet supplemented with 1.5% G. humilis rind powder or 2.0% G. humilis pulp for the last 8 weeks of the protocol. Rats fed a high-carbohydrate, high-fat diet exhibited hypertension, dyslipidemia, central obesity, impaired glucose tolerance, and non-alcoholic fatty liver disease. G. humilis rind decreased systolic blood pressure, diastolic stiffness, left ventricular inflammatory cell infiltration, and collagen deposition in high-carbohydrate, high-fat diet-fed rats. However, there was no change in glucose tolerance, body weight, or body composition. Therefore, G. humilis rind, usually a food by-product, but not the edible pulp, showed potential cardioprotection with minimal metabolic changes in a rat model of diet-induced metabolic syndrome.