Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Y. K. Seah is active.

Publication


Featured researches published by Stephen Y. K. Seah.


Journal of Bacteriology | 2004

Functional Characterization of an Aminotransferase Required for Pyoverdine Siderophore Biosynthesis in Pseudomonas aeruginosa PAO1

Chris Vandenende; Matthew Vlasschaert; Stephen Y. K. Seah

The fluorescent dihydroxyquinoline chromophore of the pyoverdine siderophore in Pseudomonas is a condensation product of D-tyrosine and l-2,4-diaminobutyrate. Both pvdH and asd (encoding aspartate beta-semialdehyde dehydrogenase) knockout mutants of Pseudomonas aeruginosa PAO1 were unable to synthesize pyoverdine under iron-limiting conditions in the absence of l-2,4-diaminobutyrate in the culture media. The pvdH gene was subcloned, and the gene product was hyperexpressed and purified from P. aeruginosa PAO1. PvdH was found to catalyze an aminotransferase reaction, interconverting aspartate beta-semialdehyde and l-2,4-diaminobutyrate. Steady-state kinetic analysis with a novel coupled assay established that the enzyme adopts a ping-pong kinetic mechanism and has the highest specificity for alpha-ketoglutarate. The specificity of the enzyme toward the smaller keto acid pyruvate is 41-fold lower. The enzyme has negligible activity toward other keto acids tested. Homologues of PvdH were present in the genomes of other Pseudomonas spp. These homologues were found in the DNA loci of the corresponding genomes that contain other pyoverdine synthesis genes. This suggests that there is a general mechanism of l-2,4-diaminobutyrate synthesis in Pseudomonas strains that produce the pyoverdine siderophore.


Journal of Bacteriology | 2001

Comparative Specificities of Two Evolutionarily Divergent Hydrolases Involved in Microbial Degradation of Polychlorinated Biphenyls

Stephen Y. K. Seah; Geneviève Labbé; Stefan R. Kaschabek; Frank Reifenrath; Walter Reineke; Lindsay D. Eltis

2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) hydrolase (BphD) is a key determinant in the aerobic transformation of polychlorinated biphenyls (PCBs) by Burkholderia sp. strain LB400 (S. Y. K. Seah, G. Labbé, S. Nerdinger, M. Johnson, V. Snieckus, and L. D. Eltis, J. Biol. Chem. 275:15701-15708, 2000). To determine whether this is also true in divergent biphenyl degraders, the homologous hydrolase of Rhodococcus globerulus P6, BphD(P6), was hyperexpressed, purified to apparent homogeneity, and studied by steady-state kinetics. BphD(P6) hydrolyzed HOPDA with a k(cat)/K(m) of 1.62 (+/- 0.03) x 10(7) M(-1) s(-1) (100 mM phosphate [pH 7.5], 25 degrees C), which is within 70% of that of BphD(LB400). BphD(P6) was also similar to BphD(LB400) in that it catalyzed the hydrolysis of HOPDAs bearing chloro substituents on the phenyl moiety at least 25 times more specifically than those bearing chloro substituents on the dienoate moiety. However, the rhodococcal enzyme was significantly more specific for 9-Cl and 10-Cl HOPDAs, catalyzing the hydrolysis of 9-Cl, 10-Cl, and 9,10-diCl HOPDAs two- to threefold respectively, more specifically than HOPDA. Moreover, 4-Cl HOPDA competitively inhibited BphD(P6) more effectively than 3-Cl HOPDA, which is the inverse of what was observed in BphD(LB400). These results demonstrate that BphD is a key determinant in the aerobic transformation of PCBs by divergent biphenyl degraders, but that there exists significant diversity in the specificity of these biphenyl hydrolases.


Biochemistry | 2009

Characterization of an aldolase-dehydrogenase complex that exhibits substrate channeling in the polychlorinated biphenyls degradation pathway.

Perrin Baker; Dan Pan; Jason Carere; Adam Rossi; Weijun Wang; Stephen Y. K. Seah

An aldolase and dehydrogenase complex from the polychlorinated biphenyl degradation pathway of the bacterium Burkholderia xenovorans LB400 was purified. The aldolase, BphI, had the highest activity with Mn(2+) as the cofactor and was able to transform 4-hydroxy-2-oxopentanoate and 4-hydroxy-2-oxohexanoate to pyruvate and acetaldehyde or propionaldehyde with similar specificity constants. Aldolase activity was competitively inhibited by the pyruvate enolate analogue, oxalate, with a K(ic) of 0.93 microM. The pH-rate profiles suggested the involvement of a pK(a) 7.7 catalytic base in the reaction mechanism. BphI activity was activated 15-fold when substrate turnover was occurring in the dehydrogenase, BphJ, which can be attributed partially to nicotinamide coenzyme binding to BphJ. BphJ had similar specificity constants for acetaldehyde or propionaldehyde and was able to utilize aliphatic aldehydes from two to five carbons in length as substrates, although K(m) values for these aldehyes were >20 mM. When 4-hydroxy-2-oxopentanoate was provided as a substrate to the BphI-BphJ complex in a coupled enzyme assay, no lag in the progress curve of BphJ was observed. When 1 mM propionaldehyde was added exogenously to a reaction mixture containing 0.1 mM 4-hydroxy-2-oxopentanoate, 95% of the CoA esters produced was acetyl CoA. Conversely, 99% of the CoA esters produced was propionyl CoA when a 10-fold molar excess of exogenous acetaldehyde was added in a reaction mixture containing 4-hydroxy-2-oxohexanoate. These results demonstrate that acetaldehyde and propionaldehyde, products of the BphI reaction, are not released in the bulk solvent but are channeled directly to the dehydrogenase.


Applied and Environmental Microbiology | 2011

Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing.

Filomena Ng; Daniel M. Wright; Stephen Y. K. Seah

ABSTRACT SsoPox, a bifunctional enzyme with organophosphate hydrolase and N-acyl homoserine lactonase activities from the hyperthermophilic archaeon Sulfolobus solfataricus, was overexpressed and purified from recombinant Pseudomonas putida KT2440 with a yield of 9.4 mg of protein per liter of culture. The enzyme has a preference for N-acyl homoserine lactones (AHLs) with acyl chain lengths of at least 8 carbon atoms, mainly due to lower Km values for these substrates. The highest specificity constant obtained was for N-3-oxo-decanoyl homoserine lactone (k cat/Km = 5.5 × 103 M−1·s−1), but SsoPox can also degrade N-butyryl homoserine lactone (C4-HSL) and N-oxo-dodecanoyl homoserine lactone (oxo-C12-HSL), which are important for quorum sensing in our Pseudomonas aeruginosa model system. When P. aeruginosa PAO1 cultures were grown in the presence of SsoPox-immobilized membranes, the production of C4-HSL- and oxo-C12-HSL-regulated virulence factors, elastase, protease, and pyocyanin were significantly reduced. This is the first demonstration that immobilized quorum-quenching enzymes can be used to attenuate the production of virulence factors controlled by quorum-sensing signals.


Journal of Bacteriology | 2006

Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa.

Li Ge; Stephen Y. K. Seah

Pseudomonas aeruginosa is an opportunistic pathogen that produces the siderophore pyoverdine, which enables it to acquire the essential nutrient iron from its host. Formation of the iron-chelating hydroxamate functional group in pyoverdine requires the enzyme PvdA, a flavin-dependent monooxygenase that catalyzes the N(5) hydroxylation of l-ornithine. pvdA from P. aeruginosa was successfully overexpressed in Escherichia coli, and the enzyme was purified for the first time. The enzyme possessed its maximum activity at pH 8.0. In the absence of l-ornithine, PvdA has an NADPH oxidase activity of 0.24 +/- 0.02 micromol min(-1) mg(-1). The substrate l-ornithine stimulated this activity by a factor of 5, and the reaction was tightly coupled to the formation of hydroxylamine. The enzyme is specific for NADPH and flavin adenine dinucleotide (FAD(+)) as cofactors, as it cannot utilize NADH and flavin mononucleotide. By fluorescence titration, the dissociation constants for NADPH and FAD(+) were determined to be 105.6 +/- 6.0 microM and 9.9 +/- 0.3 microM, respectively. Steady-state kinetic analysis showed that the l-ornithine-dependent NADPH oxidation obeyed Michaelis-Menten kinetics with apparent K(m) and V(max) values of 0.58 mM and 1.34 micromol min(-1) mg(-1). l-Lysine was a nonsubstrate effector that stimulated NADPH oxidation, but uncoupling occurred and hydrogen peroxide instead of hydroxylated l-lysine was produced. l-2,4-Diaminobutyrate, l-homoserine, and 5-aminopentanoic acid were not substrates or effectors, but they were competitive inhibitors of the l-ornithine-dependent NADPH oxidation reaction, with K(ic)s of 3 to 8 mM. The results indicate that the chemical nature of effectors is important for simulation of the NADPH oxidation rate in PvdA.


Biochemistry | 2010

Comparison of Two Metal-Dependent Pyruvate Aldolases Related by Convergent Evolution: Substrate Specificity, Kinetic Mechanism, and Substrate Channeling

Weijun Wang; Perrin Baker; Stephen Y. K. Seah

HpaI and BphI are two pyruvate class II aldolases found in aromatic meta-cleavage degradation pathways that catalyze similar reactions but are not related in sequence. Steady-state kinetic analysis of the aldol addition reactions and product inhibition assays showed that HpaI exhibits a rapid equilibrium random order mechanism while BphI exhibits a compulsory order mechanism, with pyruvate binding first. Both aldolases are able to utilize aldehyde acceptors two to five carbons in length; however, HpaI showed broader specificity and had a preference for aldehydes containing longer linear alkyl chains or C2-OH substitutions. Both enzymes were able to bind 2-keto acids larger than pyruvate, but only HpaI was able to utilize both pyruvate and 2-ketobutanoate as carbonyl donors in the aldol addition reaction. HpaI lacks stereospecific control producing racemic mixtures of 4-hydroxy-2-oxopentanoate (HOPA) from pyruvate and acetaldehyde while BphI synthesizes only (4S)-HOPA. BphI is also able to utilize acetaldehyde produced by the reduction of acetyl-CoA catalyzed by the associated aldehyde dehydrogenase, BphJ. This aldehyde was directly channeled from the dehydrogenase to the aldolase active sites, with an efficiency of 84%. Furthermore, the BphJ reductive deacylation reaction increased 4-fold when BphI was catalyzing the aldol addition reaction. Therefore, the BphI-BphJ enzyme complex exhibits unique bidirectionality in substrate channeling and allosteric activation.


Journal of Biological Chemistry | 2007

The tautomeric half-reaction of BphD, a C-C bond hydrolase. Kinetic and structural evidence supporting a key role for histidine 265 of the catalytic triad.

Geoff P. Horsman; Shiva Bhowmik; Stephen Y. K. Seah; Pravindra Kumar; Jeffrey T. Bolin; Lindsay D. Eltis

BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA (λmax is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum (λmax is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate (λmax is 506 nm) with a similar rate, 1/τ ∼ 500 s-1. The crystal structure of the S112A:HOPDA complex at 1.8-Å resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7Å away.


Journal of the American Chemical Society | 2012

Rational design of stereoselectivity in the class II pyruvate aldolase BphI.

Perrin Baker; Stephen Y. K. Seah

BphI, a pyruvate-specific class II aldolase, catalyzes the reversible carbon-carbon bond formation of 4-hydroxy-2-oxoacids up to eight carbons in length. During the aldol addition catalyzed by BphI, the S-configured stereogenic center at C4 is created via attack of a pyruvate enolate intermediate on the si face of the aldehyde carbonyl of acetaldehyde to form 4(S)-hydroxy-2-oxopentanoate. Replacement of a Leu-87 residue within the active site of the enzyme with polar asparagine and bulky tryptophan led to enzymes with no detectable aldolase activity. These variants retained decarboxylase activity for the smaller oxaloacetate substrate, which is not inhibited by excess 4-hydroxy-2-oxopentanoate, confirming the results from molecular modeling that Leu-87 interacts with the C4-methyl of 4(S)-hydroxy-2-oxoacids. Double variants L87N;Y290F and L87W;Y290F were constructed to enable the binding of 4(R)-hydroxy-2-oxoacids by relieving the steric hindrance between the 5-methyl group of these compounds and the hydroxyl substituent on the phenyl ring of Tyr-290. The resultant enzymes were shown to exclusively utilize only 4(R)- and not 4(S)-hydroxy-2-oxopentanoate as the substrate. Polarimetric analysis confirmed that the double variants are able to synthesize 4-hydroxy-2-oxoacids up to eight carbons in length, which were the opposite stereoisomer compared to those produced by the wild-type enzyme. Overall the k(cat)/K(m) values for pyruvate and aldehydes in the aldol addition reactions were affected ≤10-fold in the double variants relative to the wild-type enzyme. Thus, stereocomplementary class II pyruvate aldolases are now available to create chiral 4-hydroxy-2-oxoacid skeletons as synthons for organic reactions.


Biochemistry | 2011

Probing the Molecular Basis of Substrate Specificity, Stereospecificity, and Catalysis in the Class II Pyruvate Aldolase, BphI

Perrin Baker; Jason Carere; Stephen Y. K. Seah

BphI, a pyruvate-specific class II aldolase found in the polychlorinated biphenyls (PCBs) degradation pathway, catalyzes the reversible C-C bond cleavage of (4S)-hydroxy-2-oxoacids to form pyruvate and an aldehyde. Mutations were introduced into bphI to probe the contribution of active site residues to substrate recognition and catalysis. In contrast to the wild-type enzyme that has similar specificities for acetaldehyde and propionaldehyde, the L87A variant exhibited a 40-fold preference for propionaldehyde over acetaldehyde. The specificity constant of the L89A variant in the aldol addition reaction using pentaldehyde is increased ∼50-fold, making it more catalytically efficient for pentaldehyde utilization compared to the wild-type utilization of the natural substrate, acetaldehyde. Replacement of Tyr-290 with phenylalanine or serine resulted in a loss of stereochemical control as the variants were able to utilize substrates with both R and S configurations at C4 with similar kinetic parameters. Aldol cleavage and pyruvate α-proton exchange activity were undetectable in the R16A variant, supporting the role of Arg-16 in stabilizing a pyruvate enolate intermediate. The pH dependence of the enzyme is consistent with a single deprotonation by a catalytic base with pK(a) values of approximately 7. In H20A and H20S variants, pH profiles show the dependence of enzyme activity on hydroxide concentration. On the basis of these results, a catalytic mechanism is proposed.


Journal of Bacteriology | 2007

Characterization of a C—C Bond Hydrolase from Sphingomonas wittichii RW1 with Novel Specificities towards Polychlorinated Biphenyl Metabolites

Stephen Y. K. Seah; Jiyuan Ke; Geoffroy Denis; Geoff P. Horsman; Pascal D. Fortin; Cheryl J. Whiting; Lindsay D. Eltis

Sphingomonas wittichii RW1 degrades chlorinated dibenzofurans and dibenzo-p-dioxins via meta cleavage. We used inverse PCR to amplify dxnB2, a gene encoding one of three meta-cleavage product (MCP) hydrolases identified in the organism that are homologues of BphD involved in biphenyl catabolism. Purified DxnB2 catalyzed the hydrolysis of 8-OH 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) approximately six times faster than for HOPDA at saturating substrate concentrations. Moreover, the specificity of DxnB2 for HOPDA (k(cat)/K(m) = 1.2 x 10(7) M(-1) s(-1)) was about half that of the BphDs of Burkholderia xenovorans LB400 and Rhodococcus globerulus P6, two potent polychlorinated biphenyl (PCB)-degrading strains. Interestingly, DxnB2 transformed 3-Cl and 4-OH HOPDAs, compounds that inhibit the BphDs and limit PCB degradation. DxnB2 had a higher specificity for 9-Cl HOPDA than for HOPDA but a lower specificity for 8-Cl HOPDA (k(cat)/K(m) = 1.7 x 10(6) M(-1) s(-1)), the chlorinated analog of 8-OH HOPDA produced during dibenzofuran catabolism. Phylogenetic analyses based on structure-guided sequence alignment revealed that DxnB2 belongs to a previously unrecognized class of MCP hydrolases, evolutionarily divergent from the BphDs although the physiological substrates of both enzyme types are HOPDAs. However, both classes of enzymes have mainly small hydrophobic residues lining the subsite that binds the C-6 phenyl of HOPDA, in contrast to the bulky hydrophobic residues (Phe106, Phe135, Trp150, and Phe197) found in the class II enzymes that prefer substrates possessing a C-6 alkyl. Thr196 and/or Asn203 appears to be an important determinant of specificity for DxnB2, potentially forming hydrogen bonds with the 8-OH substituent. This study demonstrates that the substrate specificities of evolutionarily divergent hydrolases may be useful for degrading mixtures of pollutants, such as PCBs.

Collaboration


Dive into the Stephen Y. K. Seah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindsay D. Eltis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoff P. Horsman

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geneviève Labbé

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge