Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sterling B. Ortega is active.

Publication


Featured researches published by Sterling B. Ortega.


Journal of Immunology | 2006

Therapeutic Induction of Regulatory, Cytotoxic CD8+ T Cells in Multiple Sclerosis

Deepani K. Tennakoon; Riyaz S. Mehta; Sterling B. Ortega; Vijay Bhoj; Michael K. Racke; Nitin J. Karandikar

In the setting of autoimmunity, one of the goals of successful therapeutic immune modulation is the induction of peripheral tolerance, a large part of which is mediated by regulatory/suppressor T cells. In this report, we demonstrate a novel immunomodulatory mechanism by an FDA-approved, exogenous peptide-based therapy that incites an HLA class I-restricted, cytotoxic suppressor CD8+ T cell response. We have shown previously that treatment of multiple sclerosis (MS) with glatiramer acetate (GA; Copaxone) induces differential up-regulation of GA-reactive CD8+ T cell responses. We now show that these GA-induced CD8+ T cells are regulatory/suppressor in nature. Untreated patients show overall deficit in CD8+ T cell-mediated suppression, compared with healthy subjects. GA therapy significantly enhances this suppressive ability, which is mediated by cell contact-dependent mechanisms. CD8+ T cells from GA-treated patients and healthy subjects, but not those from untreated patients with MS, exhibit potent, HLA class I-restricted, GA-specific cytotoxicity. We further show that these GA-induced cytotoxic CD8+ T cells can directly kill CD4+ T cells in a GA-specific manner. Killing is enhanced by preactivation of target CD4+ T cells and may depend on presentation of GA through HLA-E. Thus, we demonstrate that GA therapy induces a suppressor/cytotoxic CD8+ T cell response, which is capable of modulating in vivo immune responses during ongoing therapy. These studies not only explain several prior observations relating to the mechanism of this drug but also provide important insights into the natural immune interplay underlying this human immune-mediated disease.


Journal of Autoimmunity | 2010

Immune regulatory CNS-reactive CD8+T cells in experimental autoimmune encephalomyelitis

Nathan R. York; Jason Mendoza; Sterling B. Ortega; Andrew Benagh; Andrew Tyler; Mihail Firan; Nitin J. Karandikar

Immune-based self-recognition and failure to modulate this response are believed to contribute to the debilitating autoimmune pathology observed in multiple sclerosis (MS). Studies from its murine model, experimental autoimmune encephalomyelitis (EAE), have shown that neuroantigen-specific CD4+T cells are capable of inducing disease, while their immune sibling, the CD8+T cells, have largely been ignored. To understand their role in autoimmune demyelination, we first confirmed that, similar to our observations in human MS, there is robust induction of neuroantigen-reactive CD8+T cells in several models, including MOG(35-55)/CFA-induced EAE. However, MOG(35-55)-specific CD8+T-cells, when purified, were unable to adoptively transfer disease into naïve mice (in contrast to CD4+T-cells). In fact, we observed that the transfer of these neuroantigen-specific CD8+T cells was able to suppress the induction of EAE and to inhibit ongoing EAE. These regulatory CD8+T cells produced IFN-gamma and perforin and were able to kill MOG loaded CD4+T-cells as well as CD4-depleted APC, suggesting a cytotoxic/suppressor mechanism. Inhibition of EAE was associated with both the modulation of APC function as well as decreased MOG-specific CD4+T cell responses. Our studies reveal a novel and unexpected immune regulatory function for neuroantigen-specific CD8+T cells and have interesting biologic and therapeutic implications.


Journal of Autoimmunity | 2011

Neuroantigen-specific CD8+ regulatory T-cell function is deficient during acute exacerbation of multiple sclerosis.

Ethan Baughman; Jason Mendoza; Sterling B. Ortega; Chris L. Ayers; Benjamin Greenberg; Elliot M. Frohman; Nitin J. Karandikar

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS). MS is thought to be T-cell-mediated, with prior research predominantly focusing on CD4+ T-cells. There is a high prevalence of CNS-specific CD8+ T-cell responses in MS patients and healthy subjects. However, the role of neuroantigen-specific CD8+ T-cells in MS is poorly understood, with the prevalent notion that these may represent pathogenic T-cells. We show here that healthy subjects and MS patients demonstrate similar magnitudes of CD8+ and CD4+ T-cell responses to various antigenic stimuli. Interestingly, CD8+ T-cells specific for CNS autoantigens, but not those specific for control foreign antigens, exhibit immune regulatory ability, suppressing proliferation of CD4+CD25- T-cells when stimulated by their cognate antigen. While CD8+ T-cell-mediated immune suppression is similar between healthy subjects and clinically quiescent treatment-naïve MS patients, it is significantly deficient during acute exacerbation of MS. Of note, the recovery of neuroantigen-specific CD8+ T-cell suppression correlates with disease recovery post-relapse. These studies reveal a novel immune suppressor function for neuroantigen-specific CD8+ T-cells that is clinically relevant in the maintenance of peripheral tolerance and the intrinsic regulation of MS immune pathology.


Journal of Immunology | 2013

The Disease-Ameliorating Function of Autoregulatory CD8 T Cells Is Mediated by Targeting of Encephalitogenic CD4 T Cells in Experimental Autoimmune Encephalomyelitis

Sterling B. Ortega; Venkatesh P. Kashi; Andrew Tyler; Khrishen Cunnusamy; Jason Mendoza; Nitin J. Karandikar

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS, and CD8 T cells are the predominant T cell population in MS lesions. Given that transfer of CNS-specific CD8 T cells results in an attenuated clinical demyelinating disease in C57BL/6 mice with immunization-induced experimental autoimmune encephalomyelitis (EAE), we investigated the cellular targets and mechanisms of autoreactive regulatory CD8 T cells. In this study we report that myelin oligodendrocyte glycoprotein peptide (MOG35–55)–induced CD8 T cells could also attenuate adoptively transferred, CD4 T cell–mediated EAE. Whereas CD8−/− mice exhibited more severe EAE associated with increased autoreactivity and inflammatory cytokine production by myelin-specific CD4 T cells, this was reversed by adoptive transfer of MOG-specific CD8 T cells. These autoregulatory CD8 T cells required in vivo MHC class Ia (KbDb) presentation. Interestingly, MOG-specific CD8 T cells could also suppress adoptively induced disease using wild-type MOG35–55-specific CD4 T cells transferred into KbDb−/− recipient mice, suggesting direct targeting of encephalitogenic CD4 T cells. In vivo trafficking analysis revealed that autoregulatory CD8 T cells are dependent on neuroinflammation for CNS infiltration, and their suppression/cytotoxicity of MOG-specific CD4 T cells is observed both in the periphery and in the CNS. These studies provide important insights into the mechanism of disease suppression mediated by autoreactive CD8 T cells in EAE.


Clinical Immunology | 2014

Disease exacerbation of multiple sclerosis is characterized by loss of terminally differentiated autoregulatory CD8+ T cells ☆

Khrishen Cunnusamy; Ethan Baughman; Jorge Franco; Sterling B. Ortega; Sushmita Sinha; Parul Chaudhary; Benjamin Greenberg; Elliot M. Frohman; Nitin J. Karandikar

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS). Although its etiology remains unknown, pathogenic T cells are thought to underlie MS immune pathology. We recently showed that MS patients harbor CNS-specific CD8+ Tregs that are deficient during disease relapse. We now demonstrate that CNS-specific CD8+ Tregs were cytolytic and could eliminate pathogenic CD4+ T cells. These CD8+ Tregs were present primarily in terminally differentiated (CD27-, CD45RO-) subset and their suppression was IFNγ, perforin and granzyme B-dependent. Interestingly, MS patients with acute relapse displayed a significant loss in terminally differentiated CD8+ T cells, with a concurrent loss in expression of perforin and granzyme B. Pre-treatment of exacerbation-derived CD8+ T cells with IL-12 significantly restored suppressive capability of these cells through upregulation of granzyme B. Our studies uncover immune-suppressive mechanisms of CNS-specific CD8+ Tregs, and may contribute to design of novel immune therapies for MS.


European Journal of Immunology | 2013

IL-21 promotes the production of anti-DNA IgG but is dispensable for kidney damage in lyn−/− mice

Toni Gutierrez; Jessica Mayeux; Sterling B. Ortega; Nitin J. Karandikar; Quan Zhen Li; Dinesh Rakheja; Xin J. Zhou; Anne B. Satterthwaite

The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear Ags and a heightened inflammatory environment, which together result in end organ damage. Lyn‐deficient mice, a model of systemic lupus erythematosus, lack an inhibitor of B‐cell and myeloid cell activation. This results in B‐cell hyper‐responsiveness, plasma cell accumulation, autoantibodies, and glomerulonephritis (GN). IL‐21 is associated with autoimmunity in mice and humans and promotes B‐cell differentiation and class switching. Here, we explore the role of IL‐21 in the autoimmune phenotypes of lyn–/– mice. We find that IL‐21 mRNA is reduced in the spleens of lyn–/–IL‐6–/– and lyn–/–Btklo mice, neither of which produce pathogenic autoantibodies or develop significant GN. While IL‐21 is dispensable for plasma cell accumulation and IgM autoantibodies in lyn–/– mice, it is required for anti‐DNA IgG antibodies and some aspects of T‐cell activation. Surprisingly, GN still develops in lyn–/–IL‐21–/– mice. This likely results from the presence of IgG autoantibodies against a limited set of non‐DNA Ags. These studies identify a specific role for IL‐21 in the class switching of anti‐DNA B cells and demonstrate that neither IL‐21 nor anti‐DNA IgG is required for kidney damage in lyn–/– mice.


Journal of Immunology | 2014

Single Dose of Glycoengineered Anti-CD19 Antibody (MEDI551) Disrupts Experimental Autoimmune Encephalomyelitis by Inhibiting Pathogenic Adaptive Immune Responses in the Bone Marrow and Spinal Cord while Preserving Peripheral Regulatory Mechanisms

Ding Chen; Monica Blazek; Sara J. Ireland; Sterling B. Ortega; Xiangmei Kong; Anouk Meeuwissen; Ann M. Stowe; Laura Carter; Yue Wang; Ronald Herbst; Nancy L. Monson

Plasma cells and the autoreactive Abs they produce are suspected to contribute to the pathogenesis of multiple sclerosis, but recent attempts to target these components of humoral immunity have failed. MEDI551, an anti-CD19 Ab that depletes mature B cells including plasma cells may offer a compelling alternative that reduces pathogenic adaptive immune responses while sparing regulatory mechanisms. Indeed, our data demonstrate that a single dose of MEDI551, given before or during ongoing experimental autoimmune encephalomyelitis, disrupts development of the disease. Leukocyte infiltration into the spinal cord is significantly reduced, as well as short-lived and long-lived autoreactive CD138+ plasma cells in the spleen and bone marrow, respectively. In addition, potentially protective CD1dhiCD5+ regulatory B cells show resistance to depletion, and myelin-specific Foxp3+ regulatory T cells are expanded. Taken together, these results demonstrate that MEDI551 disrupts experimental autoimmune encephalomyelitis by inhibiting multiple proinflammatory components whereas preserving regulatory populations.


PLOS ONE | 2014

Neuroantigen-Specific Autoregulatory CD8+ T Cells Inhibit Autoimmune Demyelination through Modulation of Dendritic Cell Function

Venkatesh P. Kashi; Sterling B. Ortega; Nitin J. Karandikar

Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS). We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+) ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC), but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+) or proteolipid protein-specific CD8+ (PLP-CD8+) T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II) or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.


Journal of Neuroimmunology | 2011

Clonal composition of neuroantigen-specific CD8+ and CD4+ T-cells in multiple sclerosis

Brian W. Biegler; Shirley X. Yan; Sterling B. Ortega; Deepani K. Tennakoon; Michael K. Racke; Nitin J. Karandikar

Patients with multiple sclerosis (MS) show a high prevalence of myelin-reactive CD8+ and CD4+ T-cell responses, which are the putative effectors/modulators of CNS neuropathology. Utilizing a novel combination of short-term culture, CFSE-based sorting and anchored PCR, we evaluated clonal compositions of neuroantigen-targeting T-cells from RRMS patients and controls. CDR3 region analysis of TCRβ chains revealed biased use of specific TCRBV-bearing CD4+ clones. CD8+ clones showed homology to published TCR from CNS-infiltrating T-cells in MS lesions. These studies are the first description of TCR usage of CNS-specific CD8+ T-cells and provide insights into their potential regulatory role in disease.


Journal of Leukocyte Biology | 2016

Perinatal chronic hypoxia induces cortical inflammation, hypomyelination, and peripheral myelin-specific T cell autoreactivity

Sterling B. Ortega; Xiagmei Kong; Ramgopal Venkataraman; Allen Michael Savedra; Steven G. Kernie; Ann M. Stowe; Lakshmi Raman

pCH is an important risk factor for brain injury and long‐term morbidity in children, occurring during the developmental stages of neurogenesis, neuronal migration, and myelination. We show that a rodent model of pCH results in an early decrease in mature myelin. Although pCH does increase progenitor oligodendrocytes in the developing brain, BrdU labeling revealed a loss in dividing progenitor oligodendrocytes, indicating a defect in mature cell replacement and myelinogenesis. Mice continued to exhibited hypomyelination, concomitant with long‐term impairment of motor function, weeks after cessation of pCH. The implication of a novel neuroimmunologic interplay, pCH also induced a significant egress of infiltrating CD4 T cells into the developing brain. This pCH‐mediated neuroinflammation included oligodendrocyte‐directed autoimmunity, with an increase in peripheral myelin‐specific CD4 T cells. Thus, both the loss of available, mature, myelin‐producing glial cells and an active increase in autoreactive, myelin‐specific CD4 T cell infiltration into pCH brains may contribute to early pCH‐induced hypomyelination in the developing CNS. The elucidation of potential mechanisms of hypoxia‐driven autoimmunity will expand our understanding of the neuroimmune axis during perinatal CNS disease states that may contribute to long‐term functional disability.

Collaboration


Dive into the Sterling B. Ortega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann M. Stowe

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiangmei Kong

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy L. Monson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ding Chen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Erik J. Plautz

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jason Mendoza

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Riyaz S. Mehta

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shirley X. Yan

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge