Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sterling B. Tebbett is active.

Publication


Featured researches published by Sterling B. Tebbett.


Marine Pollution Bulletin | 2017

Fine sediments suppress detritivory on coral reefs

Sterling B. Tebbett; Christopher H. R. Goatley; David R. Bellwood

Increasing sediment inputs are recognised as an important factor leading to coral reef degradation. However, the role of sediments in ecological processes is poorly understood. This study used paired-choice trials to quantify the effects of sediment grain size and chemical composition on feeding by the abundant detritivorous reef fish, Ctenochaetus striatus. The size of sediments from algal turfs were also compared to those ingested by reef-dwelling C. striatus. Algal turfs containing coarser sediments were preferred by C. striatus, while sediment composition (reefal carbonates vs. riverine silicates) had little effect. On the reef, C. striatus ingested finer sediments than those present in algal turfs. C. striatus appears to prefer algal turfs with coarser sediments as this facilitates ingestion of fine detrital particles, while finer sediments prevent selective feeding on detritus. These findings suggest that fine sediments from terrestrial runoff or dredging may be detrimental to feeding by detritivorous species.


PLOS ONE | 2017

The Effects of Algal Turf Sediments and Organic Loads on Feeding by Coral Reef Surgeonfishes

Sterling B. Tebbett; Christopher H. R. Goatley; David R. Bellwood

Herbivorous and detritivorous fishes interact closely with the epilithic algal matrix (EAM) on coral reefs. While sediment and organic detrital loads within the EAM might influence this interaction, the responses of functionally distinct fishes to changing sediment and organic loads have not been investigated. Aquarium based feeding trials were performed to assess how different sediment and organic loads affected feeding by the highly abundant surgeonfishes, Ctenochaetus striatus, a detritivore, and Acanthurus nigrofuscus, a herbivore. C. striatus were highly sensitive to even small increases in sediment loads (of just 75 g m-2), displaying a significant decline in feeding rates as sediment loads increased. Although C. striatus is a specialised detritivore, changing organic loads had no effect and suggests that selection of feeding surfaces is primarily mediated by total sediment loads rather than organic loads. By contrast, A. nigrofuscus displayed no changes to its feeding behaviour regardless of sediment or organic load. These findings highlight the complex, species-specific way that sediments may mediate key ecological processes on coral reefs.


PLOS ONE | 2017

Algal turf sediments and sediment production by parrotfishes across the continental shelf of the Northern Great Barrier Reef

Sterling B. Tebbett; Christopher H. R. Goatley; David R. Bellwood

Sediments are found in the epilithic algal matrix (EAM) of all coral reefs and play important roles in ecological processes. Although we have some understanding of patterns of EAM sediments across individual reefs, our knowledge of patterns across broader spatial scales is limited. We used an underwater vacuum sampler to quantify patterns in two of the most ecologically relevant factors of EAM sediments across the Great Barrier Reef: total load and grain size distribution. We compare these patterns with rates of sediment production and reworking by parrotfishes to gain insights into the potential contribution of parrotfishes to EAM sediments. Inner-shelf reef EAMs had the highest sediment loads with a mean of 864.1 g m-2, compared to 126.8 g m-2 and 287.4 g m-2 on mid- and outer-shelf reefs, respectively. High sediment loads were expected on inner-shelf reefs due to their proximity to the mainland, however, terrigenous siliceous sediments only accounted for 13–24% of total mass. On inner-shelf reef crests parrotfishes would take three months to produce the equivalent mass of sediment found in the EAM. On the outer-shelf it would take just three days, suggesting that inner-shelf EAMs are characterised by low rates of sediment turnover. By contrast, on-reef sediment production by parrotfishes is high on outer-shelf crests. However, exposure to oceanic swells means that much of this production is likely to be lost. Hydrodynamic activity also appears to structure sediment patterns at within-reef scales, with coarser sediments (> 250 μm) typifying exposed reef crest EAMs, and finer sediments (< 250 μm) typifying sheltered back-reef EAMs. As both the load and grain size of EAM sediments mediate a number of important ecological processes on coral reefs, the observed sediment gradients are likely to play a key role in the structure and function of the associated coral reef communities.


Ecology and Evolution | 2018

The role of the reef flat in coral reef trophodynamics: Past, present, and future

David R. Bellwood; Sterling B. Tebbett; Orpha Bellwood; Michalis Mihalitsis; Renato A. Morais; Robert P. Streit; Christopher J. Fulton

Abstract The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf‐grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef‐wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow‐water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.


Science of The Total Environment | 2019

Spatial mismatch in fish and coral loss following 2016 mass coral bleaching

Sharon Wismer; Sterling B. Tebbett; Robert P. Streit; David R. Bellwood

Record-breaking temperatures between 2015 and 2016 led to unprecedented pan-tropical bleaching of scleractinian corals. On the Great Barrier Reef (GBR), the effects were most pronounced in the remote, northern region, where over 90% of reefs exhibited bleaching. Mass bleaching that results in widespread coral mortality represents a major disturbance event for reef organisms, including reef fishes. Using 133 replicate 1 m2 quadrats, we quantified short-term changes in coral communities and spatially associated reef fish assemblages, at Lizard Island, Australia, in response to the 2016 mass bleaching event. Quadrats were spatially matched, permitting repeated sampling of fish and corals in the same areas: before, during and 6 months after mass bleaching. As expected, we documented a significant decrease in live coral cover. Subsequent decreases in fish abundance were primarily driven by coral-associated damselfishes. However, these losses, were relatively minor (37% decrease), especially compared to the magnitude of Acropora loss (>95% relative decrease). Furthermore, at a local, 1 m2 scale, we documented a strong spatial mismatch between fish and coral loss. Post-bleaching fish losses were not highest in quadrats that experienced the greatest loss of live coral. Nor were fish losses associated with a proliferation of cyanobacteria. Several sites did, however, exhibit increases in fish abundance suggesting substantial spatial movements. These results challenge common assumptions and emphasize the need for caution when ascribing causality to observed patterns of fish loss at larger spatial scales. Our results highlight the potential for short-term resilience to climate change, in fishes, through local migration and habitat plasticity.


Coral Reefs | 2018

Unusual caudal spines in the surgeonfish Zebrasoma scopas

Sterling B. Tebbett; David R. Bellwood

Surgeonfishes (Acanthuridae) are found in tropical and subtropical marine ecosystems and typically comprise a core component of coral reef fish assemblages (Randall 1955). The surgeonfishes are disparate in terms of their morphology, feeding habits and behavioural tendencies, yet all share the distinct, unifying feature of at least one pair of scalpel-like modified scales on their caudal peduncle (Randall 1955) which can be used for defensive or territorial interactions (Schober and Ditrich 1992). Indeed, the common name ‘surgeonfishes’ is derived from the possession of these scalpel-like caudal spines.


Royal Society Open Science | 2018

A functional evaluation of feeding in the surgeonfish Ctenochaetus striatus: the role of soft tissues

Sterling B. Tebbett; Christopher H. R. Goatley; Víctor Huertas; Michalis Mihalitsis; David R. Bellwood

Ctenochaetus striatus is one of the most abundant surgeonfishes on Indo-Pacific coral reefs, yet the functional role and feeding ecology of this species remain unclear. This species is reported to possess a rigid structure in its palate that is used for scraping, but some authors have reported that this element is comprised of soft tissue. To resolve the nature and role of this structure in the feeding ecology of C. striatus we examined evidence from anatomical observations, scanning electron microscopy, histology, X-ray micro-computed tomography scanning, high-speed video and field observations. We found that C. striatus from the Great Barrier Reef possess a retention plate (RP) on their palates immediately posterior to the premaxillary teeth which is soft, covered in a thin veneer of keratin with a papillate surface. This RP appears to be used during feeding, but does not appear to be responsible for the removal of material, which is achieved primarily by a fast closure of the lower jaw. We infer that the RP acts primarily as a ‘dustpan’, in a ‘dustpan and brush’ feeding mechanism, to facilitate the collection of particulate material from algal turfs.


Marine Environmental Research | 2018

Functional links on coral reefs: Urchins and triggerfishes a cautionary tale

Sterling B. Tebbett; David R. Bellwood

Urchins are ubiquitous components of coral reefs ecosystems, with significant roles in bioerosion and herbivory. By controlling urchin densities, triggerfishes have been identified as keystone predators. However, the functional linkages between urchins and triggerfishes, in terms of distributional patterns and concomitant effects on ecosystem processes, are not well understood, especially in relatively unexploited systems. To address this we censused urchins and triggerfishes on two cross-shelf surveys on the Great Barrier Reef (GBR) at the same times and locations. We also evaluated the role of urchins in bioerosion. Although urchin abundance and triggerfish biomass varied by 80% and nearly 900% across sites, respectively, this variability was driven primarily by shelf position with no evidence of top-down control on urchins by triggerfishes. Low urchin abundances meant urchins only played a minor role in bioerosion. We highlight the potential variability in functional links, and contributions to ecosystem processes, among regions.


Journal of Fish Biology | 2018

An evaluation of a double-tailed deformity in a coral-reef surgeonfish Acanthurus nigrofuscus (Acanthuridae) using micro-computed tomography: DOUBLE-TAILED SURGEONFISHES

Christopher H. R. Goatley; S. Wroe; Sterling B. Tebbett; David R. Bellwood

X-ray micro-computed tomography scans were used to examine the caudal-fin structure of an unusual double-tailed deformity in an adult brown surgeonfish Acanthurus nigrofuscus from the Great Barrier Reef. In both this case and in a similar double-tailed deformity in a juvenile Tomini surgeonfish Ctenochaetus tominiensis from the Philippines, the caudal fin was duplicated along the dorsoventral axis. Detailed examination of the A. nigrofuscus specimen revealed that the deformity was associated with duplication and reflection of the hypural plates and the posterior vertebrae, yet the fish survived to adulthood, indicating that the effects of duplication on survival may be limited.


Coral Reefs | 2017

Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus

Sterling B. Tebbett; Christopher H. R. Goatley; David R. Bellwood

Collaboration


Dive into the Sterling B. Tebbett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Fulton

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge