Steve A. Kay
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steve A. Kay.
Cell | 2002
Satchidananda Panda; Marina P. Antoch; Brooke H. Miller; Andrew I. Su; Andrew B. Schook; Marty Straume; Peter G. Schultz; Steve A. Kay; Joseph S. Takahashi; John B. Hogenesch
In mammals, circadian control of physiology and behavior is driven by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. We have used gene expression profiling to identify cycling transcripts in the SCN and in the liver. Our analysis revealed approximately 650 cycling transcripts and showed that the majority of these were specific to either the SCN or the liver. Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components. Major processes regulated by the SCN and liver were found to be under circadian regulation. Importantly, rate-limiting steps in these various pathways were key sites of circadian control, highlighting the fundamental role that circadian clocks play in cellular and organismal physiology.
Science | 2000
Stacey L. Harmer; John B. Hogenesch; Marty Straume; Hur-song Chang; Bin Han; Tong Zhu; Xun Wang; Joel A. Kreps; Steve A. Kay
Like most organisms, plants have endogenous biological clocks that coordinate internal events with the external environment. We used high-density oligonucleotide microarrays to examine gene expression in Arabidopsis and found that 6% of the more than 8000 genes on the array exhibited circadian changes in steady-state messenger RNA levels. Clusters of circadian-regulated genes were found in pathways involved in plant responses to light and other key metabolic pathways. Computational analysis of cycling genes allowed the identification of a highly conserved promoter motif that we found to be required for circadian control of gene expression. Our study presents a comprehensive view of the temporal compartmentalization of physiological pathways by the circadian clock in a eukaryote.
Nature Reviews Genetics | 2001
Michael W. Young; Steve A. Kay
The circadian clock is a widespread cellular mechanism that underlies diverse rhythmic functions in organisms from bacteria and fungi, to plants and animals. Intense genetic analysis during recent years has uncovered many of the components and molecular mechanisms comprising these clocks. Although autoregulatory genetic networks are a consistent feature in the design of all clocks, the weight of evidence favours their independent evolutionary origins in different kingdoms.
Cell | 1998
Ralf Stanewsky; Maki Kaneko; Patrick Emery; Bonnie Beretta; Karen Wager-Smith; Steve A. Kay; Michael Rosbash; Jeffrey C. Hall
A new rhythm mutation was isolated based on its elimination of per-controlled luciferase cycling. Levels of period or timeless clock gene products in the mutant are flat in daily light-dark cycles or constant darkness (although PER and TIM oscillate normally in temperature cycles). Consistent with the fact that light normally suppresses TIM, cryb is an apparent null mutation in a gene encoding Drosophilas version of the blue light receptor cryptochrome. Behaviorally, cryb exhibits poor synchronization to light-dark cycles in genetic backgrounds that cause external blindness or demand several hours of daily rhythm resets, and it shows no response to brief light pulses. cryb flies are rhythmic in constant darkness, correlating with robust PER and TIM cycling in certain pacemaker neurons.
Neuron | 2004
Trey K. Sato; Satchidananda Panda; Loren Miraglia; Teresa M. Reyes; Radu Daniel Rudic; Peter McNamara; Kinnery A. Naik; Garret A. FitzGerald; Steve A. Kay; John B. Hogenesch
The mammalian circadian clock plays an integral role in timing rhythmic physiology and behavior, such as locomotor activity, with anticipated daily environmental changes. The master oscillator resides within the suprachiasmatic nucleus (SCN), which can maintain circadian rhythms in the absence of synchronizing light input. Here, we describe a genomics-based approach to identify circadian activators of Bmal1, itself a key transcriptional activator that is necessary for core oscillator function. Using cell-based functional assays, as well as behavioral and molecular analyses, we identified Rora as an activator of Bmal1 transcription within the SCN. Rora is required for normal Bmal1 expression and consolidation of daily locomotor activity and is regulated by the core clock in the SCN. These results suggest that opposing activities of the orphan nuclear receptors Rora and Rev-erb alpha, which represses Bmal1 expression, are important in the maintenance of circadian clock function.
Annual Review of Physiology | 2010
David K. Welsh; Joseph S. Takahashi; Steve A. Kay
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
Nature | 2002
Marcelo J. Yanovsky; Steve A. Kay
Several organisms have evolved the ability to measure daylength, or photoperiod, allowing them to adjust their development in anticipation of annual seasonal changes. Daylength measurement requires the integration of temporal information, provided by the circadian system, with light/dark discrimination, initiated by specific photoreceptors. Here we demonstrate that in Arabidopsis this integration takes place at the level of CONSTANS (CO) function. CO is a transcriptional activator that accelerates flowering time in long days, at least in part by inducing the expression of FLOWERING LOCUS T (FT). First, we show that precise clock control of the timing of CO expression, such that it is high during daytime only in long days, is critical for daylength discrimination. We then provide evidence that CO activation of FT expression requires the presence of light perceived through cryptochrome 2 (cry2) or phytochrome A (phyA). We conclude that an external coincidence mechanism, based on the endogenous circadian control of CO messenger RNA levels, and the modulation of CO function by light, constitutes the molecular basis for the regulation of flowering time by daylength in Arabidopsis.
Cell | 2000
David E. Somers; Thomas Schultz; Maureen Milnamow; Steve A. Kay
We have conducted genetic screens for period length mutants in Arabidopsis using a transgenic bioluminescence phenotype. This screen identified mutations at a locus, ZEITLUPE (ZTL), that lengthen the free-running period of clock-controlled gene transcription and cell expansion, and alter the timing of the daylength-dependent transition from vegetative to floral development. Map-based cloning of ZTL identified a novel 609 amino acid polypeptide consisting of an amino-terminal PAS domain, an F box and six carboxy-terminal kelch repeats. The PAS region is highly similar to the PAS domain of the Arabidopsis blue-light receptor NPH1, and the Neurospora circadian-associated protein WHITE COLLAR-1 (WC-1). The striking fluence rate-dependent effect of the ztl mutations suggests that ZTL plays a primary role in the photocontrol of circadian period in higher plants.
Science | 1995
Andrew J. Millar; Isabelle Carré; Carl A. Strayer; Nam-Hai Chua; Steve A. Kay
The cycling bioluminescence of Arabidopsis plants carrying a firefly luciferase fusion construct was used to identify mutant individuals with aberrant cycling patterns. Both long- and short-period mutants were recovered. A semidominant short-period mutation, timing of CAB expression (toc1), was mapped to chromosome 5. The toc1 mutation shortens the period of two distinct circadian rhythms, the expression of chlorophyll a/b-binding protein (CAB) genes and the movements of primary leaves, although toc1 mutants do not show extensive pleiotropy for other phenotypes.
Cell | 2007
Andrew C. Liu; David K. Welsh; Caroline H. Ko; Hien G. Tran; Eric E. Zhang; Aaron A. Priest; Ethan D. Buhr; Oded Singer; Kirsten Meeker; Inder M. Verma; Francis J. Doyle; Joseph S. Takahashi; Steve A. Kay
Molecular mechanisms of the mammalian circadian clock have been studied primarily by genetic perturbation and behavioral analysis. Here, we used bioluminescence imaging to monitor Per2 gene expression in tissues and cells from clock mutant mice. We discovered that Per1 and Cry1 are required for sustained rhythms in peripheral tissues and cells, and in neurons dissociated from the suprachiasmatic nuclei (SCN). Per2 is also required for sustained rhythms, whereas Cry2 and Per3 deficiencies cause only period length defects. However, oscillator network interactions in the SCN can compensate for Per1 or Cry1 deficiency, preserving sustained rhythmicity in mutant SCN slices and behavior. Thus, behavior does not necessarily reflect cell-autonomous clock phenotypes. Our studies reveal previously unappreciated requirements for Per1, Per2, and Cry1 in sustaining cellular circadian rhythmicity and demonstrate that SCN intercellular coupling is essential not only to synchronize component cellular oscillators but also for robustness against genetic perturbations.