Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve Bevan is active.

Publication


Featured researches published by Steve Bevan.


Nature Genetics | 2009

A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke

Daniel F. Gudbjartsson; Hilma Holm; Solveig Gretarsdottir; Gudmar Thorleifsson; G. Bragi Walters; Gudmundur Thorgeirsson; Jeffrey R. Gulcher; Ellisiv B. Mathiesen; Inger Njølstad; Audhild Nyrnes; Tom Wilsgaard; Erin Mathiesen Hald; Kristian Hveem; Camilla Stoltenberg; Gayle Kucera; Tanya Stubblefield; Shannon Carter; Dan M. Roden; Maggie C.Y. Ng; Larry Baum; Wing Yee So; Ka Sing Wong; Juliana C.N. Chan; Christian Gieger; H-Erich Wichmann; Andreas Gschwendtner; Martin Dichgans; Klaus Berger; E. Bernd Ringelstein; Steve Bevan

We expanded our genome-wide association study on atrial fibrillation (AF) in Iceland, which previously identified risk variants on 4q25, and tested the most significant associations in samples from Iceland, Norway and the United States. A variant in the ZFHX3 gene on chromosome 16q22, rs7193343-T, associated significantly with AF (odds ratio OR = 1.21, P = 1.4 × 10−10). This variant also associated with ischemic stroke (OR = 1.11, P = 0.00054) and cardioembolic stroke (OR = 1.22, P = 0.00021) in a combined analysis of five stroke samples.


Lancet Neurology | 2012

Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.

Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell

Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).


Nature Genetics | 2012

Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke.

Céline Bellenguez; Steve Bevan; Andreas Gschwendtner; Chris C. A. Spencer; Annette I. Burgess; M. Pirinen; Caroline Jackson; Matthew Traylor; Amy Strange; Zhan Su; Gavin Band; Paul D. Syme; Rainer Malik; Joanna Pera; Bo Norrving; Robin Lemmens; Colin Freeman; Renata Schanz; Tom James; Deborah Poole; Lee Murphy; Helen Segal; Lynelle Cortellini; Yu-Ching Cheng; Daniel Woo; Michael A. Nalls; Bertram Müller-Myhsok; Christa Meisinger; Udo Seedorf; Helen Ross-Adams

Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10−11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28–1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.


Annals of Neurology | 2008

Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke

Solveig Gretarsdottir; Gudmar Thorleifsson; Andrei Manolescu; Unnur Styrkarsdottir; Anna Helgadottir; Andreas Gschwendtner; Konstantinos Kostulas; Steve Bevan; Thorbjorg Jonsdottir; Hjordis Bjarnason; Jona Saemundsdottir; Stefan Palsson; David O. Arnar; Hilma Holm; Gudmundur Thorgeirsson; Einar M Valdimarsson; Sigurlaug Sveinbjörnsdóttir; Christian Gieger; Klaus Berger; H-Erich Wichmann; Jan Hillert; Hugh S. Markus; Jeffrey R. Gulcher; E. Bernd Ringelstein; Augustine Kong; Martin Dichgans; Daniel F. Gudbjartsson; Unnur Thorsteinsdottir; Kari Stefansson

To find sequence variants that associate with the risk for ischemic stroke (IS), we performed a genome‐wide association study.


Annals of Neurology | 2009

Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke.

Andreas Gschwendtner; Steve Bevan; John W. Cole; Anna Plourde; Mar Matarin; Helen Ross-Adams; Thomas Meitinger; Erich Wichmann; Braxton D. Mitchell; Karen L. Furie; Agnieszka Slowik; Stephen S. Rich; Paul D. Syme; Mary J. MacLeod; James F. Meschia; Jonathan Rosand; S. J. Kittner; Hugh S. Markus; Bertram Müller-Myhsok; Martin Dichgans

Recent studies have identified a major locus for risk for coronary artery disease and myocardial infarction on chromosome 9p21.3. Stroke, in particular, ischemic stroke caused by atherosclerotic disease, shares common mechanisms with myocardial infarction. We investigated whether the 9p21 region contributes to ischemic stroke risk.


Stroke | 2012

Genetic Heritability of Ischemic Stroke and the Contribution of Previously Reported Candidate Gene and Genomewide Associations

Steve Bevan; Matthew Traylor; Poneh Adib-Samii; Rainer Malik; Nicola L.M. Paul; Caroline Jackson; Martin Farrall; Peter M. Rothwell; Cathie Sudlow; Martin Dichgans; Hugh S. Markus

Background and Purpose— The contribution of genetics to stroke risk, and whether this differs for different stroke subtypes, remains uncertain. Genomewide complex trait analysis allows heritability to be assessed from genomewide association study (GWAS) data. Previous candidate gene studies have identified many associations with stoke but whether these are important requires replication in large independent data sets. GWAS data sets provide a powerful resource to perform replication studies. Methods— We applied genomewide complex trait analysis to a GWAS data set of 3752 ischemic strokes and 5972 controls and determined heritability for all ischemic stroke and the most common subtypes: large-vessel disease, small-vessel disease, and cardioembolic stroke. By systematic review we identified previous candidate gene and GWAS associations with stroke and previous GWAS associations with related cardiovascular phenotypes (myocardial infarction, atrial fibrillation, and carotid intima-media thickness). Fifty associations were identified. Results— For all ischemic stroke, heritability was 37.9%. Heritability varied markedly by stroke subtype being 40.3% for large-vessel disease and 32.6% for cardioembolic but lower for small-vessel disease (16.1%). No previously reported candidate gene was significant after rigorous correction for multiple testing. In contrast, 3 loci from related cardiovascular GWAS studies were significant: PHACTR1 in large-vessel disease (P=2.63e−6), PITX2 in cardioembolic stroke (P=4.78e−8), and ZFHX3 in cardioembolic stroke (P=5.50e−7). Conclusions— There is substantial heritability for ischemic stroke, but this varies for different stroke subtypes. Previous candidate gene associations contribute little to this heritability, but GWAS studies in related cardiovascular phenotypes are identifying robust associations. The heritability data, and data from GWAS, suggest detecting additional associations will depend on careful stroke subtyping.


Nature Genetics | 2012

Common variants at 6p21.1 are associated with large artery atherosclerotic stroke

Elizabeth G. Holliday; Jane Maguire; Tiffany-Jane Evans; Simon A. Koblar; Jim Jannes; Jonathan Sturm; Graeme J. Hankey; Ross Baker; Jonathan Golledge; Mark W. Parsons; Rainer Malik; Mark McEvoy; Erik Biros; Martin D. Lewis; Lisa F. Lincz; Roseanne Peel; Christopher Oldmeadow; Wayne Smith; Pablo Moscato; Simona Barlera; Steve Bevan; Joshua C. Bis; Eric Boerwinkle; Giorgio B. Boncoraglio; Thomas G. Brott; Robert D. Brown; Yu-Ching Cheng; John W. Cole; Ioana Cotlarciuc; William J. Devan

Genome-wide association studies (GWAS) have not consistently detected replicable genetic risk factors for ischemic stroke, potentially due to etiological heterogeneity of this trait. We performed GWAS of ischemic stroke and a major ischemic stroke subtype (large artery atherosclerosis, LAA) using 1,162 ischemic stroke cases (including 421 LAA cases) and 1,244 population controls from Australia. Evidence for a genetic influence on ischemic stroke risk was detected, but this influence was higher and more significant for the LAA subtype. We identified a new LAA susceptibility locus on chromosome 6p21.1 (rs556621: odds ratio (OR) = 1.62, P = 3.9 × 10−8) and replicated this association in 1,715 LAA cases and 52,695 population controls from 10 independent population cohorts (meta-analysis replication OR = 1.15, P = 3.9 × 10−4; discovery and replication combined OR = 1.21, P = 4.7 × 10−8). This study identifies a genetic risk locus for LAA and shows how analyzing etiological subtypes may better identify genetic risk alleles for ischemic stroke.


Journal of Medical Genetics | 2006

The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis

Sònia Abilleira; Steve Bevan; Hugh S. Markus

Current evidence suggests that matrix metalloproteinases (MMPs) have a role in early atherosclerosis, plaque rupture and myocardial infarction. Polymorphisms in MMP genes have been examined for associations with atherosclerosis, but interpretation is complicated by methodological issues. This article presents a systematic review of these association studies and a meta-analysis of available data for polymorphisms where a sufficient number of studies was available. The 5A allele of the MMP3 5A/6A polymorphism was associated with acute myocardial infarction (odds ratio (OR) 1.26, 95% confidence interval (CI) 1.1 to 1.4, p<0.001), suggesting its role in plaque rupture. There was no association with the functional MMP9 −1562C/T polymorphism (OR 1.11, 95% CI 1.0 to 1.3, p = 0.18). Current data provide evidence for the role of MMP3 polymorphism in plaque destabilisation, but elucidation of the role of other MMP gene variants in atherosclerosis will depend on better study design, including a larger sample size, extensive screening of individual genes with haplotype analysis and replication of studies to avoid publication bias.


Stroke | 2005

Phosphodiesterase 4D Gene, Ischemic Stroke, and Asymptomatic Carotid Atherosclerosis

Steve Bevan; L. Porteous; Hugh S. Markus

Background and Purpose— Phosphodiesterase 4D (PDE4D) was identified recently as the first novel stroke gene to predispose to ischemic stroke independently of conventional risk factors. An association was only found with large vessel and cardioembolic stroke, suggesting a mechanism of accelerated atherosclerosis. We sought to replicate this association in ischemic stroke as a whole, and individual stroke subtypes, in a non-Icelandic European population. To assess a role in early atherosclerosis, we also sought associations with underlying asymptomatic atherosclerosis itself, assessed by carotid ultrasound in a community population. Methods— A total of 737 consecutive white patients with stroke and 933 white community controls free of symptomatic cerebrovascular disease were examined using a case control methodology. For association with atherosclerosis, intima-media thickness (IMT) in a community population (n=1000) was assessed using carotid ultrasound. Nineteen single nucleotide polymorphisms (SNPs) and 1 minisatellite in the PDE4D gene were determined, with haplotyping undertaken using Phase 2.0. Results— No association with ischemic stroke overall was identified. Six of the 19 SNPs were associated with cardioembolic stroke and 2 different SNPs with large vessel disease. There was no association with carotid artery IMT or carotid plaque in the asymptomatic community subjects. Conclusions— The PDE4D gene is not a major risk factor for ischemic stroke, or early atherosclerosis, within the 2 European population samples studied. On analysis of individual stroke subtypes, there is a possible association with cardioembolic stroke, but the lack of association with carotid IMT and plaque would suggest that this is via a mechanism other than accelerated atherosclerosis.


Neurology | 2014

Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12.

Laura L. Kilarski; Sefanja Achterberg; William J. Devan; Matthew Traylor; Rainer Malik; Arne Lindgren; Guillame Pare; Pankaj Sharma; Agniesczka Slowik; Vincent Thijs; Matthew Walters; Bradford B. Worrall; Michèle M. Sale; Ale Algra; L. Jaap Kappelle; Cisca Wijmenga; Bo Norrving; Johanna K. Sandling; Lars Rönnblom; An Goris; Andre Franke; C. Sudlow; Peter M. Rothwell; Christopher Levi; Elizabeth G. Holliday; Myriam Fornage; Bruce M. Psaty; Solveig Gretarsdottir; Unnar Thorsteinsdottir; Sudha Seshadri

Objectives: To perform a genome-wide association study (GWAS) using the Immunochip array in 3,420 cases of ischemic stroke and 6,821 controls, followed by a meta-analysis with data from more than 14,000 additional ischemic stroke cases. Methods: Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls. After imputation we meta-analyzed the results with imputed GWAS data from 3,548 cases and 5,972 controls recruited from the ischemic stroke WTCCC2 study, and with summary statistics from a further 8,480 cases and 56,032 controls in the METASTROKE consortium. A final in silico “look-up” of 2 single nucleotide polymorphisms in 2,522 cases and 1,899 controls was performed. Associations were also examined in 1,088 cases with intracerebral hemorrhage and 1,102 controls. Results: In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07–1.13], p = 7.12 × 10−11) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90–1.17], p = 0.695). Conclusion: Our results show, for the first time, a genetic risk locus associated with ischemic stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with intracerebral hemorrhage.

Collaboration


Dive into the Steve Bevan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Rosand

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge