Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve C. Danzer is active.

Publication


Featured researches published by Steve C. Danzer.


Anesthesiology | 2011

Comparison of the Neuroapoptotic Properties of Equipotent Anesthetic Concentrations of Desflurane, Isoflurane, or Sevoflurane in Neonatal Mice

George K. Istaphanous; Jennifer Howard; Xinyu Nan; Elizabeth A. Hughes; John McCann; John J. McAuliffe; Steve C. Danzer; Andreas W. Loepke

Background:Volatile anesthetics facilitate surgical procedures and imaging studies in millions of children every year. Neuronal cell death after prolonged exposure to isoflurane in developing animals has raised serious concerns regarding its safe use in children. Although sevoflurane and desflurane are becoming more popular for pediatric anesthesia, their cytotoxic effects have not been compared with those of isoflurane. Accordingly, using newborn mice, the current study established the respective potencies of desflurane, isoflurane, and sevoflurane and then compared equipotent doses of these anesthetics regarding their effects on cortical neuroapoptosis. Methods:Minimum alveolar concentrations were determined in littermates (aged 7–8 days, n = 42) using tail-clamp stimulation in a bracketing study design. By using equipotent doses of approximately 0.6 minimum alveolar concentration, another group of littermates was randomly assigned to receive desflurane, isoflurane, or sevoflurane or to fast in room air for 6 h. After exposure, animals (n = 47) were euthanized, neocortical apoptotic neuronal cell death was quantified, and caspase 3 activity was compared between the four groups. Results:The minimum alveolar concentration was determined to be 12.2% for desflurane, 2.7% for isoflurane, and 5.4% for sevoflurane. After a 6-h exposure to approximately 0.6 minimum alveolar concentration of desflurane, isoflurane, or sevoflurane, neuronal cell death and apoptotic activity were significantly increased, irrespective of the specific anesthetic used. Conclusions:In neonatal mice, equipotent doses of the three commonly used inhaled anesthetics demonstrated similar neurotoxic profiles, suggesting that developmental neurotoxicity is a common feature of all three drugs and cannot be avoided by switching to newer agents.


Anesthesia & Analgesia | 2009

The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory.

Andreas W. Loepke; George K. Istaphanous; John J. McAuliffe; Lili Miles; Elizabeth A. Hughes; John McCann; Kathryn E. Harlow; C. Dean Kurth; Michael T. Williams; Charles V. Vorhees; Steve C. Danzer

BACKGROUND: Volatile anesthetics, such as isoflurane, are widely used in infants and neonates. Neurodegeneration and neurocognitive impairment after exposure to isoflurane, midazolam, and nitrous oxide in neonatal rats have raised concerns regarding the safety of pediatric anesthesia. In neonatal mice, prolonged isoflurane exposure triggers hypoglycemia, which could be responsible for the neurocognitive impairment. We examined the effects of neonatal isoflurane exposure and blood glucose on brain cell viability, spontaneous locomotor activity, as well as spatial learning and memory in mice. METHODS: Seven-day-old mice were randomly assigned to 6 h of 1.5% isoflurane with or without injections of dextrose or normal saline, or to 6 h of room air without injections (no anesthesia). Arterial blood gases and glucose were measured. After 2 h, 18 h, or 11 wk postexposure, cellular viability was assessed in brain sections stained with Fluoro-Jade B, caspase 3, or NeuN. Nine weeks postexposure, spontaneous locomotor activity was assessed, and spatial learning and memory were evaluated in the Morris water maze using hidden and reduced platform trials. RESULTS: Apoptotic cellular degeneration increased in several brain regions early after isoflurane exposure, compared with no anesthesia. Despite neonatal cell loss, however, adult neuronal density was unaltered in two brain regions significantly affected by the neonatal degeneration. In adulthood, spontaneous locomotor activity and spatial learning and memory performance were similar in all groups, regardless of neonatal isoflurane exposure. Neonatal isoflurane exposure led to an 18% mortality, and transiently increased Paco2, lactate, and base deficit, and decreased blood glucose levels. However, hypoglycemia did not seem responsible for the neurodegeneration, as dextrose supplementation failed to prevent neuronal loss. CONCLUSIONS: Prolonged isoflurane exposure in neonatal mice led to increased immediate brain cell degeneration, however, no significant reductions in adult neuronal density or deficits in spontaneous locomotion, spatial learning, or memory function were observed.


The Journal of Neuroscience | 2007

Pilocarpine-Induced Seizures Cause Selective Time-Dependent Changes to Adult-Generated Hippocampal Dentate Granule Cells

Cynthia Walter; Brian L. Murphy; Raymund Y. K. Pun; Anne L. Spieles-Engemann; Steve C. Danzer

Aberrantly interconnected granule cells are characteristic of temporal lobe epilepsy. By reducing network stability, these abnormal neurons may contribute directly to disease development. Only subsets of granule cells, however, exhibit abnormalities. Why this is the case is not known. Ongoing neurogenesis in the adult hippocampus may provide an explanation. Newly generated granule cells may be uniquely vulnerable to environmental disruptions relative to their mature neighbors. Here, we determine whether there is a critical period after neuronal birth during which neuronal integration can be disrupted by an epileptogenic insult. By bromodeoxyuridine birthdating cells in green fluorescent protein-expressing transgenic mice, we were able to noninvasively label granule cells born 8 weeks before (mature), 1 week before (immature), or 3 weeks after (newborn) pilocarpine-epileptogenesis. Neuronal morphology was examined 4 and 8 weeks after pilocarpine treatment. Strikingly, almost 50% of immature granule cells exposed to pilocarpine-epileptogenesis exhibited aberrant hilar basal dendrites. In contrast, only 9% of mature granule cells exposed to the identical insult possessed basal dendrites. Moreover, newborn cells were even more severely impacted than immature cells, with 40% exhibiting basal dendrites and an additional 20% exhibiting migration defects. In comparison, <5% of neurons from normal animals exhibited either abnormality, regardless of age. Together, these data demonstrate the existence of a critical period after the birth of adult-generated neurons during which they are vulnerable to being recruited into epileptogenic neuronal circuits. Pathological brain states therefore may pose a significant hurdle for the appropriate integration of newly born endogenous, and exogenous, neurons.


Experimental Neurology | 2012

Depression, stress, epilepsy and adult neurogenesis.

Steve C. Danzer

Epilepsy and depression share an unusually high coincidence suggestive of a common etiology. Disrupted production of adult-born hippocampal granule cells in both disorders may contribute to this high coincidence. Chronic stress and depression are associated with decreased granule cell neurogenesis. Epilepsy is associated with increased production - but aberrant integration - of new cells early in the disease and decreased production late in the disease. In both cases, the literature suggests these changes in neurogenesis play important roles in their respective diseases. Aberrant integration of adult-generated cells during the development of epilepsy may impair the ability of the dentate gyrus to prevent excess excitatory activity from reaching hippocampal pyramidal cells, thereby promoting seizures. Effective treatment of a subset of depressive symptoms, on the other hand, may require increased granule cell neurogenesis, indicating that adult-generated granule cells can modulate mood and affect. Given the robust changes in adult neurogenesis evident in both disorders, competing effects on brain structure are likely. Changes in relative risk, disease course or response to treatment seem probable, but complex and changing patterns of neurogenesis in both conditions will require sophisticated experimental designs to test these ideas. Despite the challenges, this area of research is critical for understanding and improving treatment for patients suffering from these disorders.


The Journal of Neuroscience | 2013

Accumulation of Abnormal Adult-Generated Hippocampal Granule Cells Predicts Seizure Frequency and Severity

Michael S. Hester; Steve C. Danzer

Accumulation of abnormally integrated, adult-born, hippocampal dentate granule cells (DGCs) is hypothesized to contribute to the development of temporal lobe epilepsy (TLE). DGCs have long been implicated in TLE, because they regulate excitatory signaling through the hippocampus and exhibit neuroplastic changes during epileptogenesis. Furthermore, DGCs are unusual in that they are continually generated throughout life, with aberrant integration of new cells underlying the majority of restructuring in the dentate during epileptogenesis. Although it is known that these abnormal networks promote abnormal neuronal firing and hyperexcitability, it has yet to be established whether they directly contribute to seizure generation. If abnormal DGCs do contribute, a reasonable prediction would be that the severity of epilepsy will be correlated with the number or load of abnormal DGCs. To test this prediction, we used a conditional, inducible transgenic mouse model to fate map adult-generated DGCs. Mossy cell loss, also implicated in epileptogenesis, was assessed as well. Transgenic mice rendered epileptic using the pilocarpine-status epilepticus model of epilepsy were monitored continuously by video/EEG for 4 weeks to determine seizure frequency and severity. Positive correlations were found between seizure frequency and (1) the percentage of hilar ectopic DGCs, (2) the amount of mossy fiber sprouting, and (3) the extent of mossy cell death. In addition, mossy fiber sprouting and mossy cell death were correlated with seizure severity. These studies provide correlative evidence in support of the hypothesis that abnormal DGCs contribute to the development of TLE and also support a role for mossy cell loss.


The Journal of Neuroscience | 2011

Heterogeneous integration of adult-generated granule cells into the epileptic brain

Brian L. Murphy; Raymund Y. K. Pun; Hulian Yin; Christian R. Faulkner; Andreas W. Loepke; Steve C. Danzer

The functional impact of adult-generated granule cells in the epileptic brain is unclear, with data supporting both protective and maladaptive roles. These conflicting findings could be explained if new granule cells integrate heterogeneously, with some cells taking neutral or adaptive roles and others contributing to recurrent circuitry supporting seizures. Here, we tested this hypothesis by completing detailed morphological characterizations of age- and experience-defined cohorts of adult-generated granule cells from transgenic mice. The majority of newborn cells exposed to an epileptogenic insult exhibited reductions in dendritic spine number, suggesting reduced excitatory input to these cells. A significant subset, however, exhibited higher spine numbers. These latter cells tended to have enlarged cell bodies, long basal dendrites, or both. Moreover, cells with basal dendrites received significantly more recurrent mossy fiber input through their apical dendrites, indicating that these cells are robustly integrated into the pathological circuitry of the epileptic brain. These data imply that newborn cells play complex—and potentially conflicting—roles in epilepsy.


The Journal of Neuroscience | 2004

Localization of Brain-Derived Neurotrophic Factor to Distinct Terminals of Mossy Fiber Axons Implies Regulation of Both Excitation and Feedforward Inhibition of CA3 Pyramidal Cells

Steve C. Danzer; James O McNamara

Hippocampal dentate granule cells directly excite and indirectly inhibit CA3 pyramidal cells via distinct presynaptic terminal specializations of their mossy fiber axons. This mossy fiber pathway contains the highest concentration of brain-derived neurotrophic factor (BDNF) in the CNS, yet whether BDNF is positioned to regulate the excitatory and/or inhibitory pathways is unknown. To localize BDNF, confocal microscopy of green fluorescent protein transgenic mice was combined with BDNF immunohistochemistry. Approximately half of presynaptic granule cell-CA3 pyramidal cell contacts were found to contain BDNF. Moreover, enhanced neuronal activity virtually doubled the percentage of BDNF-immunoreactive terminals contacting CA3 pyramidal cells. To our surprise, BDNF was also found in mossy fiber terminals contacting inhibitory neurons. These studies demonstrate that mossy fiber BDNF is poised to regulate both direct excitatory and indirect feedforward inhibitory inputs to CA3 pyramdal cells and reveal that seizure activity increases the pool of BDNF-expressing granule cell presynaptic terminals contacting CA3 pyramidal cells.


Frontiers in Molecular Neuroscience | 2014

Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation

Candi L. LaSarge; Steve C. Danzer

The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.


Annals of Neurology | 2013

Cell Age–Specific Vulnerability of Neurons to Anesthetic Toxicity

Rylon D. Hofacer; Meng Deng; Christopher G. Ward; Bernadin Joseph; Elizabeth A. Hughes; Connie Jiang; Steve C. Danzer; Andreas W. Loepke

Anesthetics have been linked to widespread neuronal cell death in neonatal animals. Epidemiological human studies have associated early childhood anesthesia with long‐term neurobehavioral abnormalities, raising substantial concerns that anesthetics may cause similar cell death in young children. However, key aspects of the phenomenon remain unclear, such as why certain neurons die, whereas immediately adjacent neurons are seemingly unaffected, and why the immature brain is exquisitely vulnerable, whereas the mature brain seems resistant. Elucidating these questions is critical for assessing the phenomenons applicability to humans, defining the susceptible age, predicting vulnerable neuronal populations, and devising mitigating strategies.


Glia | 2009

Developmental and post‐injury cortical gliogenesis: A Genetic fate‐mapping study with Nestin‐CreER mice

Kevin A. Burns; Brian L. Murphy; Steve C. Danzer; Chia-Yi Kuan

The primary sources of cortical gliogenesis, either during development or after adult brain injury, remain uncertain. We previously generated Nestin‐CreER mice to fate‐map the progeny of radial glial cells (RG), a source of astrocytes and oligodendrocytes in the nervous system. Here, we show that Nestin‐CreER mice label another population of glial progenitors, namely the perinatal subventricular zone (SVZ) glioblasts, if they are crossed with stop‐floxed EGFP mice and receive tamoxifen in late embryogenesis (E16–E18). Quantification showed E18 tamoxifen‐induction labeled more perinatal SVZ glioblasts than RG and transitional RG combined in the newborn brain (54% vs. 22%). Time‐lapse microscopy showed SVZ‐glioblasts underwent complex metamorphosis and often‐reciprocal transformation into transitional RG. Surprisingly, the E10‐dosed RG progenitors produced astrocytes, but no oligodendrocytes, whereas E18‐induction fate‐mapped both astrocytes and NG2+ oligodendrocyte precursors in the postnatal brain. These results suggest that cortical oligodendrocytes mostly derive from perinatal SVZ glioblast progenitors. Further, by combining genetic fate‐mapping and BrdU‐labeling, we showed that cortical astrocytes cease proliferation soon after birth (

Collaboration


Dive into the Steve C. Danzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas W. Loepke

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian L. Murphy

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Candi L. LaSarge

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. McAuliffe

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christian R. Faulkner

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Hughes

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge