Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve K. Cho is active.

Publication


Featured researches published by Steve K. Cho.


Cell Metabolism | 2012

Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

Isaac Marin-Valencia; Chendong Yang; Tomoyuki Mashimo; Steve K. Cho; Hyeonman Baek; Xiao Li Yang; Kartik N. Rajagopalan; Melissa Maddie; Vamsidhara Vemireddy; Zhenze Zhao; Ling Cai; Levi B. Good; Benjamin P. Tu; Kimmo J. Hatanpaa; Bruce Mickey; José M. Matés; Juan M. Pascual; Elizabeth A. Maher; Craig R. Malloy; Ralph J. DeBerardinis; Robert M. Bachoo

Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.


Clinical Cancer Research | 2010

The Telomerase Antagonist, Imetelstat, Efficiently Targets Glioblastoma Tumor-Initiating Cells Leading to Decreased Proliferation and Tumor Growth

Calin O. Marian; Steve K. Cho; Brian McEllin; Elizabeth A. Maher; Kimmo J. Hatanpaa; Christopher Madden; Bruce Mickey; Woodring E. Wright; Jerry W. Shay; Robert M. Bachoo

Purpose: Telomerase activity is one of the hallmarks of cancer and is a highly relevant therapeutic target. The effects of a novel human telomerase antagonist, imetelstat, on primary human glioblastoma (GBM) tumor-initiating cells were investigated in vitro and in vivo. Experimental Design: Tumor-initiating cells were isolated from primary GBM tumors and expanded as neurospheres in vitro. The GBM tumor-initiating cells were treated with imetelstat and examined for the effects on telomerase activity levels, telomere length, proliferation, clonogenicity, and differentiation. Subsequently, mouse orthotopic and subcutaneous xenografts were used to assess the in vivo efficacy of imetelstat. Results: Imetelstat treatment produced a dose-dependent inhibition of telomerase (IC50 0.45 μmol/L). Long-term imetelstat treatment led to progressive telomere shortening, reduced rates of proliferation, and eventually cell death in GBM tumor-initiating cells. Imetelstat in combination with radiation and temozolomide had a dramatic effect on cell survival and activated the DNA damage response pathway. Imetelstat is able to cross the blood-brain barrier in orthotopic GBM xenograft tumors. Fluorescently labeled GBM tumor cells isolated from orthotopic tumors, following systemic administration of imetelstat (30 mg/kg every day for three days), showed ∼70% inhibition of telomerase activity. Chronic systemic treatment produced a marked decrease in the rate of xenograft subcutaneous tumor growth. Conclusion: This preclinical study supports the feasibility of testing imetelstat in the treatment of GBM patients, alone or in combination with standard therapies. Clin Cancer Res; 16(1); 154–63


Cancer Research | 2010

Surface-immobilized aptamers for cancer cell isolation and microscopic cytology

Yuan Wan; Young Tae Kim; Na Li; Steve K. Cho; Robert M. Bachoo; Andrew D. Ellington; Samir M. Iqbal

Exposing rare but highly malignant tumor cells that migrate from the primary tumor mass into adjacent tissue(s) or circulate in the bloodstream is critical for early detection and effective intervention(s). Here, we report on an aptamer-based strategy directed against epidermal growth factor receptor (EGFR), the most common oncogene in glioblastoma (GBM), to detect these deadly tumor cells. GBMs are characterized by diffuse infiltration into normal brain regions, and the inability to detect GBM cells renders the disease surgically incurable with a median survival of just 14.2 months. To test the sensitivity and specificity of our platform, anti-EGFR RNA aptamers were immobilized on chemically modified glass surfaces. Cells tested included primary human GBM cells expressing high levels of the wild-type EGFR, as well as genetically engineered murine glioma cells overexpressing the most common EGFR mutant (EGFRvIII lacking exons 2-7) in Ink4a/Arf-deficient astrocytes. We found that surfaces functionalized with anti-EGFR aptamers could capture both the human and murine GBM cells with high sensitivity and specificity. Our findings show how novel aptamer substrates could be used to determine whether surgical resection margins are free of tumor cells, or more widely for detecting tumor cells circulating in peripheral blood to improve early detection and/or monitoring residual disease after treatment.


NMR in Biomedicine | 2012

Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors.

Isaac Marin-Valencia; Steve K. Cho; Dinesh Rakheja; Kimmo J. Hatanpaa; Payal Kapur; Tomoyuki Mashimo; Ashish Jindal; Vamsidhara Vemireddy; Levi B. Good; Jack Raisanen; Xiankai Sun; Bruce Mickey; Changho Choi; Masaya Takahashi; Osamu Togao; Juan M. Pascual; Ralph J. DeBerardinis; Elizabeth A. Maher; Craig R. Malloy; Robert M. Bachoo

It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using orthotopic mouse models of human glioblastoma (GBM) and renal cell carcinoma metastatic to brain, we estimated the activity of the PPP relative to glycolysis by infusing [1,2‐13C2]glucose. The [3‐13C]lactate/[2,3‐13C2]lactate ratio was similar for both the GBM and brain metastasis and their respective surrounding brains (GBM, 0.197 ± 0.011 and 0.195 ± 0.033, respectively (p = 1); metastasis: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than the PPP flux in these tumors, and that the PPP flux into the lactate pool is similar in both tumors. Remarkably, 13C–13C coupling was observed in molecules derived from Krebs cycle intermediates in both tumor types, denoting glucose oxidation. In the renal cell carcinoma, in contrast with GBM, 13C multiplets of γ‐aminobutyric acid (GABA) differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. In addition, the orthotopic renal tumor, the patients primary renal mass and brain metastasis were all strongly immunopositive for the 67‐kDa isoform of glutamate decarboxylase, as were 84% of tumors on a renal cell carcinoma tissue microarray of the same histology, suggesting that GABA synthesis is cell autonomous in at least a subset of renal cell carcinomas. Taken together, these data demonstrate that 13C‐labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. Copyright


Current Molecular Medicine | 2002

Neuronal Ceroid Lipofuscinoses Caused by Defects in Soluble Lysosomal Enzymes (CLN1 and CLN2)

Sandra L. Hofmann; Armita Atashband; Steve K. Cho; Amit K. Das; Praveena Gupta; Jui Yun Lu

Infantile and classical late infantile neuronal ceroid lipofuscinoses (NCL) are two recent additions to the expanding spectrum of lysosomal storage disorders caused by deficiencies in lysosomal hydrolases. They are latecomers to the lysosomal storage disorders, probably because of the heterogeneous nature of the storage material, which precluded meaningful biochemical analysis. Infantile NCL is caused by deficiency in palmitoyl-protein thioesterase, an enzyme that hydrolyzes fatty acids from cysteine residues in lipid-modified proteins. Classical late-infantile NCL is caused by a deficiency in tripeptidyl amino peptidase-I, a lysosomal peptidase that removes three amino acids from the free amino terminus of peptides or small proteins. Late-onset forms of these disorders have been described. The clinical, biochemical, and molecular genetic aspects of these two latest lysosomal storage disorders are discussed in this review. In addition, approaches to treatment and future directions for research are examined.


Eukaryotic Cell | 2004

pdf1, a Palmitoyl Protein Thioesterase 1 Ortholog in Schizosaccharomyces pombe: a Yeast Model of Infantile Batten Disease

Steve K. Cho; Sandra L. Hofmann

ABSTRACT Infantile Batten disease is a severe neurodegenerative storage disorder caused by mutations in the human PPT1 (palmitoyl protein thioesterase 1) gene, which encodes a lysosomal hydrolase that removes fatty acids from lipid-modified proteins. PPT1 has orthologs in many species, including lower organisms and plants, but not in Saccharomyces cerevisiae. The fission yeast Schizosaccharomyces pombe contains a previously uncharacterized open reading frame (SPBC530.12c) that encodes the S. pombe Ppt1p ortholog fused in frame to a second enzyme that is highly similar to a previously cloned mouse dolichol pyrophosphatase (Dolpp1p). In the present study, we characterized this interesting gene (designated here as pdf1, for palmitoyl protein thioesterase-dolichol pyrophosphate phosphatase fusion 1) through deletion of the open reading frame and complementation by plasmids bearing mutations in various regions of the pdf1 sequence. Strains bearing a deletion of the entire pdf1 open reading frame are nonviable and are rescued by a pdf1 expression plasmid. Inactivating mutations in the Dolpp1p domain do not rescue the lethality, whereas mutations in the Ppt1p domain result in cells that are viable but abnormally sensitive to sodium orthovanadate and elevated extracellular pH. The latter phenotypes have been previously associated with class C and class D vacuolar protein sorting (vps) mutants and vacuolar membrane H+-ATPase (vma) mutants in S. cerevisiae. Importantly, the Ppt1p-deficient phenotype is complemented by the human PPT1 gene. These results indicate that the function of PPT1 has been widely conserved throughout evolution and that S. pombe may serve as a genetically tractable model for the study of human infantile Batten disease.


Materials Science and Engineering: C | 2016

Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent

Ratchapol Jenjob; Na Kun; Jung Yeon Ghee; Zheyu Shen; Xiaoxia Wu; Steve K. Cho; Don Haeng Lee; Su-Geun Yang

In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd(3+), chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd(3+) in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd(3+) incubated with Ca(2+) was performed by using a dialysis membrane (MWCO 100-500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd(3+), the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd(3+) were released from Gd-DTPA-Pullulan after 2h incubation with Ca(2+) and Fe(2+), respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t1/2,α=0.43 h, t1/2,β=2.32 h), much longer than 0.11h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast.


European Journal of Medicinal Chemistry | 2018

Synthesis and structure-activity relationships of quinolinone and quinoline-based P2X7 receptor antagonists and their anti-sphere formation activities in glioblastoma cells

Seung Hwa Kwak; Seungheon Shin; Ji Hyun Lee; Jin Kyoung Shim; Minjeong Kim; So Deok Lee; A-Ram Lee; Jinsu Bae; Jin-Hee Park; Aliaa Abdelrahman; Christa E. Müller; Steve K. Cho; Seok Gu Kang; Myung Ae Bae; Jung Yoon Yang; Hyojin Ko; William A. Goddard; Yong Chul Kim

Screening a compound library of quinolinone derivatives identified compound 11a as a new P2X7 receptor antagonist. To optimize its activity, we assessed structure-activity relationships (SAR) at three different positions, R1, R2 and R3, of the quinolinone scaffold. SAR analysis suggested that a carboxylic acid ethyl ester group at the R1 position, an adamantyl carboxamide group at R2 and a 4-methoxy substitution at the R3 position are the best substituents for the antagonism of P2X7R activity. However, because most of the quinolinone derivatives showed low inhibitory effects in an IL-1β ELISA assay, the core structure was further modified to a quinoline skeleton with chloride or substituted phenyl groups. The optimized antagonists with the quinoline scaffold included 2-chloro-5-adamantyl-quinoline derivative (16c) and 2-(4-hydroxymethylphenyl)-5-adamantyl-quinoline derivative (17k), with IC50 values of 4 and 3 nM, respectively. In contrast to the quinolinone derivatives, the antagonistic effects of the quinoline compounds (16c and 17k) were paralleled by their ability to inhibit the release of the pro-inflammatory cytokine, IL-1β, from LPS/IFN-γ/BzATP-stimulated THP-1 cells (IC50 of 7 and 12 nM, respectively). In addition, potent P2X7R antagonists significantly inhibited the sphere size of TS15-88 glioblastoma cells.


Bioconjugate Chemistry | 2018

Mitochondria-Targeting Peptoids

Ho Yeon Nam; Jong-Ah Hong; Jieun Choi; Seungheon Shin; Steve K. Cho; Jiwon Seo; Jiyoun Lee

Mitochondria-specific delivery methods offer a valuable tool for studying mitochondria-related diseases and provide breakthroughs in therapeutic development. Although several small-molecule and peptide-based transporters have been developed, peptoids, proteolysis-resistant peptidomimetics, are a promising alternative to current approaches. We designed a series of amphipathic peptoids and evaluated their cellular uptake and mitochondrial localization. Two peptoids with cyclohexyl residues demonstrated highly efficient cell penetration and mitochondrial localization without significant adverse effects on the cells and mitochondria. These mitochondria-targeting peptoids could facilitate the selective and robust targeted delivery of bioactive compounds, such as drugs, antioxidants, and photosensitizers, with minimal off-target effects.


Journal of Biological Chemistry | 2002

Identification and Characterization of a cDNA Encoding a Dolichyl Pyrophosphate Phosphatase Located in the Endoplasmic Reticulum of Mammalian Cells

Jeffrey S. Rush; Steve K. Cho; Songmin Jiang; Sandra L. Hofmann; Charles J. Waechter

Collaboration


Dive into the Steve K. Cho's collaboration.

Top Co-Authors

Avatar

Robert M. Bachoo

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bruce Mickey

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Maher

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kimmo J. Hatanpaa

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sandra L. Hofmann

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tomoyuki Mashimo

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Ellington

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Craig R. Malloy

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Isaac Marin-Valencia

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Juan M. Pascual

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge