Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve P. Wood is active.

Publication


Featured researches published by Steve P. Wood.


Structure | 1999

The physiological structure of human C-reactive protein and its complex with phosphocholine.

Darren Thompson; Mark B. Pepys; Steve P. Wood

BACKGROUND Human C-reactive protein (CRP) is the classical acute phase reactant, the circulating concentration of which rises rapidly and extensively in a cytokine-mediated response to tissue injury, infection and inflammation. Serum CRP values are routinely measured, empirically, to detect and monitor many human diseases. However, CRP is likely to have important host defence, scavenging and metabolic functions through its capacity for calcium-dependent binding to exogenous and autologous molecules containing phosphocholine (PC) and then activating the classical complement pathway. CRP may also have pathogenic effects and the recent discovery of a prognostic association between increased CRP production and coronary atherothrombotic events is of particular interest. RESULTS The X-ray structures of fully calcified C-reactive protein, in the presence and absence of bound PC, reveal that although the subunit beta-sheet jellyroll fold is very similar to that of the homologous pentameric protein serum amyloid P component, each subunit is tipped towards the fivefold axis. PC is bound in a shallow surface pocket on each subunit, interacting with the two protein-bound calcium ions via the phosphate group and with Glu81 via the choline moiety. There is also an unexpected hydrophobic pocket adjacent to the ligand. CONCLUSIONS The structure shows how large ligands containing PC may be bound by CRP via a phosphate oxygen that projects away from the surface of the protein. Multipoint attachment of one planar face of the CRP molecule to a PC-bearing surface would leave available, on the opposite exposed face, the recognition sites for C1q, which have been identified by mutagenesis. This would enable CRP to target physiologically and/or pathologically significant complement activation. The hydrophobic pocket adjacent to bound PC invites the design of inhibitors of CRP binding that may have therapeutic relevance to the possible role of CRP in atherothrombotic events.


Structure | 1994

Comparative analyses of pentraxins: implications for protomer assembly and ligand binding.

Narayanaswamy Srinivasan; Helen E. White; Jonas Emsley; Steve P. Wood; Mark B. Pepys; Tom L. Blundell

BACKGROUND Pentraxins are a family of plasma proteins characterized by their pentameric assembly and calcium-dependent ligand binding. The recent determination of the crystal structure for a member of this family, human serum amyloid P component (SAP), provides a basis for the comparative analysis of the pentraxin family. RESULTS We have compared the sequences, tertiary structures and quaternary arrangements of SAP with human C-reactive protein (CRP), Syrian hamster SAP (HSAP) and Limulus polyphemus CRP (LIM). These proteins can adopt a beta-jelly roll topology and a hydrophobic core similar to that seen in SAP. Only minor differences are observed in the positions of residues involved in coordinating calcium ions. CONCLUSIONS Calcium-mediated ligand binding by CRP, HSAP and LIM is similar to that defined by the crystal structure of SAP, but sequence differences in the hydrophobic pocket explain the differential ligand specificities exhibited by the homologous proteins. Differences elsewhere, including insertions and deletions, account for the different (hexameric) quaternary structure of LIM.


Biochemistry | 2011

A Structural Study of Norovirus 3C Protease Specificity: Binding of a Designed Active Site-Directed Peptide Inhibitor

Robert Hussey; Leighton Coates; Raj Gill; Peter T. Erskine; Shu-Fen Coker; Ed Mitchell; Jonathan B. Cooper; Steve P. Wood; Robert Broadbridge; Ian N. Clarke; Paul R. Lambden; Peter M. Shoolingin-Jordan

Noroviruses are the major cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI) which has been refined at 1.7 Å resolution. The inhibitor, acetyl-Glu-Phe-Gln-Leu-Gln-X, which is based on the most rapidly cleaved recognition sequence in the 200 kDa polyprotein substrate, reacts covalently through its propenyl ethyl ester group (X) with the active site nucleophile, Cys 139. The structure permits, for the first time, the identification of substrate recognition and binding groups in a noroviral 3C protease and thus provides important new information for the development of antiviral prophylactics.


FEBS Letters | 2000

Molecular chaperone properties of serum amyloid P component

Alun R. Coker; Alan Purvis; Douglas J. Baker; Mark B. Pepys; Steve P. Wood

The selective binding of serum amyloid P component (SAP) to proteins in the pathological amyloid cross‐β fold suggests a possible chaperone role. Here we show that human SAP enhances the refolding yield of denatured lactate dehydrogenase and protects against enzyme inactivation during agitation of dilute solutions. These effects are independent of calcium ions and are not inhibited by compounds that block the amyloid recognition site on the B face of SAP, implicating the A face and/or the edges of the SAP pentamer. We discuss the possibility that the chaperone property of SAP, or its failure, may contribute to the pathogenesis of amyloidosis.


Proteins | 1996

The three‐dimensional structure of Escherichia coli porphobilinogen deaminase at 1.76‐Å resolution

Gordon V. Louie; Paul D. Brownlie; Richard Lambert; Jonathan B. Cooper; Tom L. Blundell; Steve P. Wood; Vladimir N. Malashkevich; Alfons Hädener; Martin J. Warren; Peter M. Shoolingin-Jordan

Porphobilinogen deaminase (PBGD) catalyses the polymerization of four molecules of porphobilinogen to form the 1‐hydroxymethylbilane, preuroporphyrinogen, a key intermediate in the biosynthesis of tetrapyrroles. The three‐dimensional structure of wild‐type PBGD from Escherichia coli has been determined by multiple isomorphous replacement and refined to a crystallographic R‐factor of 0.188 at 1.76 Å resolution. The polypeptide chain of PBGD is folded into three α/β domains. Domains 1 and 2 have a similar overall topology, based on a five‐stranded, mixed β‐sheet. These two domains, which are linked by two hinge segments but otherwise make few direct interactions, form an extensive active site cleft at their interface. Domain 3, an open‐faced, anti‐parallel sheet of three strands, interacts approximately equally with the other two domains. The dipyrromethane cofactor is covalently attached to a cysteine side‐chain borne on a flexible loop of domain 3. The cofactor serves as a primer for the assembly of the tetrapyrrole product and is held within the active site cleft by hydrogen‐bonds and salt‐bridges that are formed between its acetate and propionate side‐groups and the polypeptide chain. The structure of a variant of PBGD, in which the methionines have been replaced with selenomethionines, has also been determined. The cofactor, in the native and functional form of the enzyme, adopts a conformation in which the second pyrrole ring (C2) occupies an internal position in the active site cleft. On oxidation, however, this C2 ring of the cofactor adopts a more external position that may correspond approximately to the site of substrate binding and polypyrrole chain elongation. The side‐chain of Asp84 hydrogen‐bonds the hydrogen atoms of both cofactor pyrrole nitrogens and also potentially the hydrogen atom of the pyrrole nitrogen of the porphobilinogen molecule bound to the proposed substrate binding site. This group has a key catalytic role, possibly in stabilizing the positive charges that develop on the pyrrole nitrogens during the ring‐coupling reactions. Possible mechanisms for the processive elongation of the polypyrrole chain involve: accommodation of the elongating chain within the active site cleft, coupled with shifts in the relative positions of domains 1 and 2 to carry the terminal ring into the appropriate position at the catalytic site; or sequential translocation of the elongating polypyrrole chain, attached to the cofactor on domain 3, through the active site cleft by the progressive movement of domain 3 with respect to domains 1 and 2. Other mechanisms are considered although the amino acid sequence comparisons between PBGDs from all species suggest they share the same three‐dimensional structure and mechanism of activity.


Molecular Medicine Today | 1995

Molecular basis of acute intermittent porphyria.

Steve P. Wood; Richard Lambert; Peter M. Jordan

Acute intermittent porphyria is an inherited disease of haem biosynthesis that results from mutation of the gene for the enzyme porphobilinogen deaminase. Many different mutations have been located throughout the gene. The three-dimensional structure of the enzyme helps in understanding how these mutations lead to inactivation even when, in some cases, the mutated product is abundant and folded correctly.


Protein Science | 2003

Atomic resolution analysis of the catalytic site of an aspartic proteinase and an unexpected mode of binding by short peptides

Peter T. Erskine; Leighton Coates; Sanjay Mall; Raj Gill; Steve P. Wood; Dean A. A. Myles; J. B. Cooper

The X‐ray structures of native endothiapepsin and a complex with a hydroxyethylene transition state analog inhibitor (H261) have been determined at atomic resolution. Unrestrained refinement of the carboxyl groups of the enzyme by using the atomic resolution data indicates that both catalytic aspartates in the native enzyme share a single negative charge equally; that is, in the crystal, one half of the active sites have Asp 32 ionized and the other half have Asp 215 ionized. The electron density map of the native enzyme refined at 0.9 Å resolution demonstrates that there is a short peptide (probably Ser‐Thr) bound noncovalently in the active site cleft. The N‐terminal nitrogen of the dipeptide interacts with the aspartate diad of the enzyme by hydrogen bonds involving the carboxyl of Asp 215 and the catalytic water molecule. This is consistent with classical findings that the aspartic proteinases can be inhibited weakly by short peptides and that these enzymes can catalyze transpeptidation reactions. The dipeptide may originate from autolysis of the N‐terminal Ser‐Thr sequence of the enzyme during crystallization.


Journal of Bacteriology | 2003

Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops

Michael M. Roberts; Alun R. Coker; Gianluca Fossati; Paolo Mascagni; Anthony R. M. Coates; Steve P. Wood

The crystal structure of Mycobacterium tuberculosis chaperonin 10 (cpn10(Mt)) has been determined to a resolution of 2.8 A. Two dome-shaped cpn10(Mt) heptamers complex through loops at their bases to form a tetradecamer with 72 symmetry and a spherical cage-like structure. The hollow interior enclosed by the tetradecamer is lined with hydrophilic residues and has dimensions of 30 A perpendicular to and 60 A along the sevenfold axis. Tetradecameric cpn10(Mt) has also been observed in solution by dynamic light scattering. Through its base loop sequence cpn10(Mt) is known to be the agent in the bacterium responsible for bone resorption and for the contribution towards its strong T-cell immunogenicity. Superimposition of the cpn10(Mt) sequences 26 to 32 and 66 to 72 and E. coli GroES 25 to 31 associated with bone resorption activity shows them to have similar conformations and structural features, suggesting that there may be a common receptor for the bone resorption sequences. The base loops of cpn10s in general also attach to the corresponding chaperonin 60 (cpn60) to enclose unfolded protein and to facilitate its correct folding in vivo. Electron density corresponding to a partially disordered protein subunit appears encapsulated within the interior dome cavity of each heptamer. This suggests that the binding of substrates to cpn10 is possible in the absence of cpn60.


Journal of Structural Biology | 2009

Structure and function of the L-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis

A. Bowyer; H. Mikolajek; J.W. Stuart; Steve P. Wood; F. Jamil; Naeem Rashid; M. Akhtar; J. B. Cooper

The X-ray structure of the holo-form of l-threonine dehydrogenase (TDH) from Thermococcus kodakaraensis (TkTDH) has been determined at 2.4A resolution. TDH catalyses the NAD(+)-dependent oxidation of l-threonine to 2-amino-3-ketobutyrate, and is one of the first enzymes in this family to be solved by X-ray crystallography. The enzyme is a homo-tetramer, each monomer consisting of 350 amino acids that form two domains; a catalytic domain and a nicotinamide co-factor (NAD(+))-binding domain, which contains an alpha/beta Rossmann fold motif. An extended twelve-stranded beta-sheet is formed by the association of pairs of monomers in the tetramer. TkTDH shows strong overall structural similarity to TDHs from thermophiles and alcohol dehydrogenases (ADH) from lower life forms, despite low sequence homology, exhibiting the same overall fold of the monomer and assembly of the tetramer. The structure reveals the binding site of the essential co-factor NAD(+) which is present in all subunits. Docking studies suggest a mode of interaction of TDH with 2-amino-3-ketobutyrate CoA ligase, the subsequent enzyme in the pathway for conversion of threonine to glycine. TDH is known to form a stable functional complex with 2-amino-3-ketobutyrate ligase, most probably to shield an unstable intermediate.


Biochemical Journal | 2003

X-ray structure of a putative reaction intermediate of 5-aminolaevulinic acid dehydratase

Peter T. Erskine; Leighton Coates; Danica Butler; James H. Youell; Amanda A. Brindley; Steve P. Wood; Martin J. Warren; Peter M. Shoolingin-Jordan; Jonathan B. Cooper

The X-ray structure of yeast 5-aminolaevulinic acid dehydratase, in which the catalytic site of the enzyme is complexed with a putative cyclic intermediate composed of both substrate moieties, has been solved at 0.16 nm (1.6 A) resolution. The cyclic intermediate is bound covalently to Lys(263) with the amino group of the aminomethyl side chain ligated to the active-site zinc ion in a position normally occupied by a catalytic hydroxide ion. The cyclic intermediate is catalytically competent, as shown by its turnover in the presence of added substrate to form porphobilinogen. The findings, combined with those of previous studies, are consistent with a catalytic mechanism in which the C-C bond linking both substrates in the intermediate is formed before the C-N bond.

Collaboration


Dive into the Steve P. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alun R. Coker

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raj Gill

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Leighton Coates

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jingxu Guo

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark B. Pepys

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge