Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve Pells is active.

Publication


Featured researches published by Steve Pells.


Cell Research | 2011

Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development

Alexey Ruzov; Yanina Tsenkina; Andrea Serio; Tatiana Dudnakova; Judy Fletcher; Yu Bai; Tatiana Chebotareva; Steve Pells; Zara Hannoun; Gareth J. Sullivan; Siddharthan Chandran; David C. Hay; Mark Bradley; Ian Wilmut; Paul A. De Sousa

Methylation of cytosine is a DNA modification associated with gene repression. Recently, a novel cytosine modification, 5-hydroxymethylcytosine (5-hmC) has been discovered. Here we examine 5-hmC distribution during mammalian development and in cellular systems, and show that the developmental dynamics of 5-hmC are different from those of 5-methylcytosine (5-mC); in particular 5-hmC is enriched in embryonic contexts compared to adult tissues. A detectable 5-hmC signal appears in pre-implantation development starting at the zygote stage, where the paternal genome is subjected to a genome-wide hydroxylation of 5-mC, which precisely coincides with the loss of the 5-mC signal in the paternal pronucleus. Levels of 5-hmC are high in cells of the inner cell mass in blastocysts, and the modification colocalises with nestin-expressing cell populations in mouse post-implantation embryos. Compared to other adult mammalian organs, 5-hmC is strongly enriched in bone marrow and brain, wherein high 5-hmC content is a feature of both neuronal progenitors and post-mitotic neurons. We show that high levels of 5-hmC are not only present in mouse and human embryonic stem cells (ESCs) and lost during differentiation, as has been reported previously, but also reappear during the generation of induced pluripotent stem cells; thus 5-hmC enrichment correlates with a pluripotent cell state. Our findings suggest that apart from the cells of neuronal lineages, high levels of genomic 5-hmC are an epigenetic feature of embryonic cell populations and cellular pluri- and multi-lineage potency. To our knowledge, 5-hmC represents the first epigenetic modification of DNA discovered whose enrichment is so cell-type specific.


BioMed Research International | 2010

Dielectrophoresis: A Review of Applications for Stem Cell Research

Ronald Pethig; Anoop Menachery; Steve Pells; Paul A. De Sousa

Dielectrophoresis can discriminate distinct cellular identities in heterogeneous populations, and monitor cell state changes associated with activation and clonal expansion, apoptosis, and necrosis, without the need for biochemical labels. Demonstrated capabilities include the enrichment of haematopoetic stem cells from bone marrow and peripheral blood, and adult stem cells from adipose tissue. Recent research suggests that this technique can predict the ultimate fate of neural stem cells after differentiation before the appearance of specific cell-surface proteins. This review summarises the properties of cells that contribute to their dielectrophoretic behaviour, and their relevance to stem cell research and translational applications.


Nature Communications | 2013

A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells

Rong Zhang; Heidi K. Mjoseng; Marieke A. Hoeve; Nina G. Bauer; Steve Pells; Rut Besseling; Srinivas Velugotla; Guilhem Tourniaire; Ria E. B. Kishen; Yanina Tsenkina; Chris Armit; Cairnan R.E. Duffy; Martina Helfen; Frank Edenhofer; Paul A. De Sousa; Mark Bradley

Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth, while mechanical, enzymatic or chemical cell dissociation methods are used for cellular passaging. However, these methods are ill defined, thus introducing variability into the system, and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate, which support long-term human embryonic stem cell growth and pluripotency over a period of 2–6 months. The hydrogels permitted gentle, reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used, undefined biological substrates represent a flexible and scalable approach for improving the definition, efficacy and safety of human embryonic stem cell culture systems for research, industrial and clinical applications.


Biomicrofluidics | 2012

Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives

Srinivas Velugotla; Steve Pells; Heidi K. Mjoseng; Cairnan R.E. Duffy; Stewart Smith; Paul A. De Sousa; Ronald Pethig

Assessment of the dielectrophoresis (DEP) cross-over frequency (f xo), cell diameter, and derivative membrane capacitance (C m) values for a group of undifferentiated human embryonic stem cell (hESC) lines (H1, H9, RCM1, RH1), and for a transgenic subclone of H1 (T8) revealed that hESC lines could not be discriminated on their mean f xo and C m values, the latter of which ranged from 14 to 20 mF/m(2). Differentiation of H1 and H9 to a mesenchymal stem cell-like phenotype resulted in similar significant increases in mean C m values to 41-49 mF/m(2) in both lines (p < 0.0001). BMP4-induced differentiation of RCM1 to a trophoblast cell-like phenotype also resulted in a distinct and significant increase in mean C m value to 28 mF/m(2) (p < 0.0001). The progressive transition to a higher membrane capacitance was also evident after each passage of cell culture as H9 cells transitioned to a mesenchymal stem cell-like state induced by growth on a substrate of hyaluronan. These findings confirm the existence of distinctive parameters between undifferentiated and differentiating cells on which future application of dielectrophoresis in the context of hESC manufacturing can be based.


Stem Cell Research | 2009

Clinically failed eggs as a source of normal human embryo stem cells.

Paul A. De Sousa; John Gardner; Sharon Sneddon; Steve Pells; Britt Jorgensen Tye; Pawlina Dand; Daniel Collins; Karen Stewart; Lisa Shaw; Stefan Przyborski; Michael J. Cooke; K. John McLaughlin; Susan J. Kimber; B. A. Lieberman; Ian Wilmut; Daniel R. Brison

The promise of human embryo stem cells (hESCs) for regenerative medicine is offset by the ethical and practical challenges involved in sourcing eggs and embryos for this objective. In this study we sought to isolate an hESC line from clinically failed eggs, the usage of which would not conflict with donor interests to conceive. A total of 8 blastocysts were allocated for hESC derivation from a pool of 579 eggs whose fertilization had been clinically assessed to have occurred abnormally (i.e., three pronuclei) or failed (i.e., no pronuclei) following in vitro insemination or intracytoplasmic sperm injection (ICSI). The latter were subjected to a recovery intervention consisting of either reinsemination by ICSI or parthenogenetic stimulation. One hESC line (RCM1) was obtained from a failed-to-fertilize inseminated egg recovered by parthenogenetic activation. Standard in vitro and in vivo characterization revealed this line to possess all of the properties attributed to a normal euploid hESC line. Whole-genome single-nucleotide polymorphism analysis further revealed that the line was biparental, indicating that sperm penetration had occurred, although parthenogenetic stimulation was required for activation. Our results demonstrate the viability of an alternative strategy to generate normal hESC lines from clinically failed eggs, thereby further minimizing the potential to conflict with donor reproductive interest to conceive.


Journal of Electrical Bioimpedance | 2011

Dielectrophoretic Characterisation of Mammalian Cells above 100 MHz

Colin Chung; Martin Waterfall; Steve Pells; Anoop Menachery; Stewart Smith; Ronald Pethig

Abstract Dielectrophoresis (DEP) is a label-free technique for the characterization and manipulation of biological particles - such as cells, bacteria and viruses. Many studies have focused on the DEP cross-over frequency fxo1, where cells in a non-uniform electric field undergo a transition from negative to positive DEP. Determination of fxo1 provides a value for the membrane capacitance from the cell diameter, the means to monitor changes in cell morphology and viability, and the information required when devising DEP cell separation protocols. In this paper we describe the first systematic measurements of the second DEP cross-over frequency fxo2 that occurs at much higher frequencies. Theory indicates that fxo2 is sensitive to the internal dielectric properties of a cell, and our experiments on murine myeloma cells reveal that these properties exhibit temporal changes that are sensitive to both the osmolality and temperature of the cell suspending medium.


Stem Cell Research | 2012

A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture ☆

Alexander Ermakov; Steve Pells; Paz Freile; Veronika V. Ganeva; Jan Wildenhain; Mark Bradley; Adam J. Pawson; Robert P. Millar; Paul A. De Sousa

Multiple signalling pathways maintain human embryonic stem cells (hESC) in an undifferentiated state. Here we sought to define the significance of G protein signal transduction in the preservation of this state distinct from other cellular processes. Continuous treatment with drugs targeting G(αs)-, G(α-i/o)- and G(α-q/11)-subunit signalling mediators were assessed in independent hESC lines after 7days to discern effects on normalised alkaline phosphatase positive colony frequency vs total cell content. This identified PLCβ, intracellular free calcium and CAMKII kinase activity downstream of G(α-q/11) as of particular importance to the former. To confirm the significance of this finding we generated an agonist-responsive hESC line transgenic for a G(α-q/11) subunit-coupled receptor and demonstrated that an undifferentiated state could be promoted in the presence of an agonist without exogenously supplied bFGF and that this correlated with elevated intracellular calcium. Similarly, treatment of unmodified hESCs with a range of intracellular free calcium-modulating drugs in biologically defined mTESR culture system lacking exogenous bFGF promoted an hESC phenotype after 1week of continuous culture as defined by co-expression of OCT4 and NANOG. At least one of these drugs, lysophosphatidic acid significantly elevates phosphorylation of calmodulin and STAT3 in this culture system (p<0.05). These findings substantiate a role for G-protein and calcium signalling in undifferentiated hESC culture.


Journal of Biomechanical Engineering-transactions of The Asme | 2011

Elasticity of human embryonic stem cells as determined by atomic force microscopy

Róbert Kiss; Henry Bock; Steve Pells; Elisabetta Canetta; Ashok K. Adya; Andrew J. Moore; Paul A. De Sousa; Nicholas Willoughby

The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Youngs modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Youngs modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.


The Journal of Pathology | 2011

Human embryonic stem cells rapidly take up and then clear exogenous human and animal prions in vitro.

Zuzana Krejciova; Steve Pells; Enrico Cancellotti; Paz Freile; Matthew Bishop; Kay Samuel; G. Robin Barclay; James Ironside; Jean Manson; Marc L. Turner; Paul A. De Sousa; Mark Head

Susceptibility to prion infection involves interplay between the prion strain and host genetics, but expression of the host‐encoded cellular prion protein is a known prerequisite. Here we consider human embryonic stem cell (hESC) susceptibility by characterizing the genetics and expression of the normal cellular prion protein and by examining their response to acute prion exposure. Seven hESC lines were tested for their prion protein gene codon 129 genotype and this was found to broadly reflect that of the normal population. hESCs expressed prion protein mRNA, but only low levels of prion protein accumulated in self‐renewing populations. Following undirected differentiation, up‐regulation of prion protein expression occurred in each of the major embryonic lineages. Self‐renewing populations of hESCs were challenged with infectious human and animal prions. The exposed cells rapidly and extensively took up this material, but when the infectious source was removed the level and extent of intracellular disease‐associated prion protein fell rapidly. In the absence of a sufficiently sensitive test for prions to screen therapeutic cells, and given the continued use of poorly characterized human and animal bioproducts during hESC derivation and cultivation, the finding that hESCs rapidly take up and process abnormal prion protein is provocative and merits further investigation. Copyright


PLOS ONE | 2015

Novel Human Embryonic Stem Cell Regulators Identified by Conserved and Distinct CpG Island Methylation State.

Steve Pells; Eirini Koutsouraki; Sofia Morfopoulou; Sara Valencia-Cadavid; Simon R. Tomlinson; Ravi Kiran Reddy Kalathur; Matthias E. Futschik; Paul A. De Sousa

Human embryonic stem cells (hESCs) undergo epigenetic changes in vitro which may compromise function, so an epigenetic pluripotency “signature” would be invaluable for line validation. We assessed Cytosine-phosphate-Guanine Island (CGI) methylation in hESCs by genomic DNA hybridisation to a CGI array, and saw substantial variation in CGI methylation between lines. Comparison of hESC CGI methylation profiles to corresponding somatic tissue data and hESC mRNA expression profiles identified a conserved hESC-specific methylation pattern associated with expressed genes. Transcriptional repressors and activators were over-represented amongst genes whose associated CGIs were methylated or unmethylated specifically in hESCs, respectively. Knockdown of candidate transcriptional regulators (HMGA1, GLIS2, PFDN5) induced differentiation in hESCs, whereas ectopic expression in fibroblasts modulated iPSC colony formation. Chromatin immunoprecipitation confirmed interaction between the candidates and the core pluripotency transcription factor network. We thus identify novel pluripotency genes on the basis of a conserved and distinct epigenetic configuration in human stem cells.

Collaboration


Dive into the Steve Pells's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paz Freile

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Bradley

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Bock

Heriot-Watt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge