Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve Pettifer is active.

Publication


Featured researches published by Steve Pettifer.


Nucleic Acids Research | 2010

BioCatalogue: a universal catalogue of web services for the life sciences

Jiten Bhagat; Franck Tanoh; Eric Nzuobontane; Thomas Laurent; Jerzy Orlowski; Marco Roos; Katy Wolstencroft; Sergejs Aleksejevs; Robert Stevens; Steve Pettifer; Rodrigo Lopez; Carole A. Goble

The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable ‘Web 2.0’-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community.


PLOS Computational Biology | 2008

Defrosting the Digital Library: Bibliographic Tools for the Next Generation Web

Duncan Hull; Steve Pettifer; Douglas B. Kell

Many scientists now manage the bulk of their bibliographic information electronically, thereby organizing their publications and citation material from digital libraries. However, a library has been described as “thought in cold storage,” and unfortunately many digital libraries can be cold, impersonal, isolated, and inaccessible places. In this Review, we discuss the current chilly state of digital libraries for the computational biologist, including PubMed, IEEE Xplore, the ACM digital library, ISI Web of Knowledge, Scopus, Citeseer, arXiv, DBLP, and Google Scholar. We illustrate the current process of using these libraries with a typical workflow, and highlight problems with managing data and metadata using URIs. We then examine a range of new applications such as Zotero, Mendeley, Mekentosj Papers, MyNCBI, CiteULike, Connotea, and HubMed that exploit the Web to make these digital libraries more personal, sociable, integrated, and accessible places. We conclude with how these applications may begin to help achieve a digital defrost, and discuss some of the issues that will help or hinder this in terms of making libraries on the Web warmer places in the future, becoming resources that are considerably more useful to both humans and machines.


BMC Systems Biology | 2010

Low-complexity regions within protein sequences have position-dependent roles.

Alain Coletta; John W. Pinney; David Weiss Solís; James Marsh; Steve Pettifer; Teresa K. Attwood

BackgroundRegions of protein sequences with biased amino acid composition (so-called Low-Complexity Regions (LCRs)) are abundant in the protein universe. A number of studies have revealed that i) these regions show significant divergence across protein families; ii) the genetic mechanisms from which they arise lends them remarkable degrees of compositional plasticity. They have therefore proved difficult to compare using conventional sequence analysis techniques, and functions remain to be elucidated for most of them. Here we undertake a systematic investigation of LCRs in order to explore their possible functional significance, placed in the particular context of Protein-Protein Interaction (PPI) networks and Gene Ontology (GO)-term analysis.ResultsIn keeping with previous results, we found that LCR-containing proteins tend to have more binding partners across different PPI networks than proteins that have no LCRs. More specifically, our study suggests i) that LCRs are preferentially positioned towards the protein sequence extremities and, in contrast with centrally-located LCRs, such terminal LCRs show a correlation between their lengths and degrees of connectivity, and ii) that centrally-located LCRs are enriched with transcription-related GO terms, while terminal LCRs are enriched with translation and stress response-related terms.ConclusionsOur results suggest not only that LCRs may be involved in flexible binding associated with specific functions, but also that their positions within a sequence may be important in determining both their binding properties and their biological roles.


Journal of Experimental Psychology: Applied | 2003

Transfer of Route Learning from Virtual to Real Environments

Martin J. Farrell; Paul Arnold; Steve Pettifer; Jessica Adams; Tom Graham; Michael MacManamon

The authors investigated the extent to which route learning in a virtual environment (VE) transfers to the real world. In Experiment 1, active VE exploration, on its own or with a map, produced better transfer of training than either no VE training at all or passive VE training; however, transfer was achieved after shorter training times with the map. Experiment 2 demonstrated that VE + map training was not superior to training with a map alone, and Experiment 3 demonstrated that the poorer performances observed after passive VE training were not simply due to a lack of attention but to the lack of active navigational decisions. The authors concluded that the present VE technology does not provide better route learning than studying a map.


Nucleic Acids Research | 2010

WIWS: a protein structure bioinformatics Web service collection

Maarten L. Hekkelman; Tim A. H. te Beek; Steve Pettifer; David Thorne; Terri K. Attwood; Gert Vriend

The WHAT IF molecular-modelling and drug design program is widely distributed in the world of protein structure bioinformatics. Although originally designed as an interactive application, its highly modular design and inbuilt control language have recently enabled its deployment as a collection of programmatically accessible web services. We report here a collection of WHAT IF-based protein structure bioinformatics web services: these relate to structure quality, the use of symmetry in crystal structures, structure correction and optimization, adding hydrogens and optimizing hydrogen bonds and a series of geometric calculations. The freely accessible web services are based on the industry standard WS-I profile and the EMBRACE technical guidelines, and are available via both REST and SOAP paradigms. The web services run on a dedicated computational cluster; their function and availability is monitored daily.


Bioinformatics | 2013

EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats

Jon C. Ison; Matúš Kalaš; Inge Jonassen; Dan Bolser; Mahmut Uludag; Hamish McWilliam; James Malone; Rodrigo Lopez; Steve Pettifer; Peter Rice

Motivation: Advancing the search, publication and integration of bioinformatics tools and resources demands consistent machine-understandable descriptions. A comprehensive ontology allowing such descriptions is therefore required. Results: EDAM is an ontology of bioinformatics operations (tool or workflow functions), types of data and identifiers, application domains and data formats. EDAM supports semantic annotation of diverse entities such as Web services, databases, programmatic libraries, standalone tools, interactive applications, data schemas, datasets and publications within bioinformatics. EDAM applies to organizing and finding suitable tools and data and to automating their integration into complex applications or workflows. It includes over 2200 defined concepts and has successfully been used for annotations and implementations. Availability: The latest stable version of EDAM is available in OWL format from http://edamontology.org/EDAM.owl and in OBO format from http://edamontology.org/EDAM.obo. It can be viewed online at the NCBO BioPortal and the EBI Ontology Lookup Service. For documentation and license please refer to http://edamontology.org. This article describes version 1.2 available at http://edamontology.org/EDAM_1.2.owl. Contact: [email protected]


IEEE Transactions on Visualization and Computer Graphics | 2006

A network architecture supporting consistent rich behavior in collaborative interactive applications

James Marsh; Mashhuda Glencross; Steve Pettifer; Roger J. Hubbold

Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios nor, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics


The Grid 2 (2)#R##N#Blueprint for a New Computing Infrastructure | 2004

Knowledge Integration: In Silico Experiments in Bioinformatics

Carole A. Goble; Chris Greenhalgh; Steve Pettifer; Robert D. Stevens

Publisher Summary Biologists, aided by bioinformaticians, have become knowledge workers, intelligently weaving together the information available to the community, linking and correlating it meaningfully, and generating even more information. Many bio-Grid projects focus on the sharing of computational resources, large scale data movement and replication for simulations, remote instrumentation steerage, high-throughput sequence analysis, or image processing, as in the Biomedical Informatics Research Network (BIRN) project. However, much of bioinformatics involves a scientific process with relatively modest computational needs but significant semantic and data complexity. The my Grid project is building high-level services for integrating applications and data resources, concentrating on dynamic resource discovery, workflow specification and dynamic enactment, and distributed query processing. These services merely enable experiments to be formed and executed. Thus, my Grids second category of services supports the scientific method and best practice found at the bench but often neglected at the workstation, specifically provenance management, change notification, and personalization.


cluster computing and the grid | 2003

On the use of agents in a BioInformatics grid

Luc Moreau; Simon Miles; Carole A. Goble; R. Mark Greenwood; Vijay Dialani; Matthew Addis; M. Nedim Alpdemir; Rich Cawley; David De Roure; Justin Ferris; Robert J. Gaizauskas; Kevin Glover; Chris Greenhalgh; Peter Li; Xiaojian Liu; Phillip Lord; Michael Luck; Darren Marvin; Tom Oinn; Norman W. Paton; Steve Pettifer; Milena Radenkovic; Angus Roberts; Alan Robinson; Tom Rodden; Martin Senger; Nick Sharman; Robert Stevens; Brian Warboys; Anil Wipat

My Grid is an e-Science Grid project that aims to help biologists and bioinformaticians to perform workflow-based in silico experiments, and help them to automate the management of such workflows through personalisation, notification of change and publication of experiments. In this paper, we describe the architecture of my Grid and how it will be used by the scientist. We then show how my Grid can benefit from agents technologies. We have identified three key uses of agent technologies in my Grid: user agents, able to customize and personalise data, agent communication languages offering a generic and portable communication medium, and negotiation allowing multiple distributed entities to reach service level agreements.


Semantic Web - Linked Data for Health Care and the Life Sciences archive | 2014

Applying linked data approaches to pharmacology: Architectural decisions and implementation

Alasdair J. G. Gray; Paul T. Groth; Antonis Loizou; Sune Askjær; Christian Y. A. Brenninkmeijer; Kees Burger; Christine Chichester; Chris T. Evelo; Carole A. Goble; Lee Harland; Steve Pettifer; Mark Thompson; Andra Waagmeester; Antony J. Williams

The discovery of new medicines requires pharmacologists to interact with a number of information sources ranging from tabular data to scientific papers, and other specialized formats. In this application report, we describe a linked data platform for integrating multiple pharmacology datasets that form the basis for several drug discovery applications. The functionality offered by the platform has been drawn from a collection of prioritised drug discovery business questions created as part of the Open PHACTS project, a collaboration of research institutions and major pharmaceutical companies. We describe the architecture of the platform focusing on seven design decisions that drove its development with the aim of informing others developing similar software in this or other domains. The utility of the platform is demonstrated by the variety of drug discovery applications being built to access the integrated data.An alpha version of the OPS platform is currently available to the Open PHACTS consortium and a first public release will be made in late 2012, see http://www.openphacts.org/ for details.

Collaboration


Dive into the Steve Pettifer's collaboration.

Top Co-Authors

Avatar

James Marsh

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian J. West

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Thorne

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Stevens

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Jonathan Cook

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge