Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve Schoonooghe is active.

Publication


Featured researches published by Steve Schoonooghe.


Nature Communications | 2016

Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells

Charlotte L. Scott; Fang Zheng; Patrick De Baetselier; Liesbet Martens; Yvan Saeys; Sofie De Prijck; Saskia Lippens; Chloé Abels; Steve Schoonooghe; Geert Raes; Nick Devoogdt; Bart N. Lambrecht; Alain Beschin; Martin Guilliams

Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them.


Cancer Research | 2012

Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective In Vivo Imaging of Tumor-Associated Macrophages

Kiavash Movahedi; Steve Schoonooghe; Damya Laoui; Isabelle Houbracken; Wim Waelput; Karine Breckpot; Luc Bouwens; Tony Lahoutte; Patrick De Baetselier; Geert Raes; Nick Devoogdt; Jo A. Van Ginderachter

Tumor-associated macrophages (TAM) are an important component of the tumor stroma and exert several tumor-promoting activities. Strongly pro-angiogenic TAMs that reside in hypoxic tumor areas highly express macrophage mannose receptor (MMR, CD206). In this study, we targeted MMR+ TAMs using nanobodies, which are single-domain antigen-binding fragments derived from Camelidae heavy-chain antibodies. MMR-specific nanobodies stained TAMs in lung and breast tumor single-cell suspensions in vitro, and intravenous injection of 99mTc-labeled anti-MMR nanobodies successfully targeted tumor in vivo. Retention of the nanobody was receptor-specific and absent in MMR-deficient mice. Importantly, co-injection of excess unlabeled, bivalent anti-MMR nanobodies reduced nanobody accumulation in extratumoral organs to background levels, without compromising tumor uptake. Within tumors, the 99mTc-labeled nanobodies specifically labeled MMR+ TAMs, as CCR2-deficient mice that contain fewer TAMs showed significantly reduced tumor uptake. Further, anti-MMR nanobodies accumulated in hypoxic regions, thus targeting pro-angiogenic MMR+ TAMs. Taken together, our findings provide preclinical proof of concept that anti-MMR nanobodies can be used to selectively target and image TAM subpopulations in vivo.


Journal of Immunology | 2000

Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives.

Reinhilde Schoonjans; An Willems; Steve Schoonooghe; Walter Fiers; Johan Grooten; Nico Mertens

Due to their multispecificity and versatility, bispecific Abs (BsAbs) are promising therapeutic tools in tomorrow’s medicine. Especially intermediate-sized BsAbs that combine body retention with tissue penetration are valuable for therapy but necessitate expression systems that favor heterodimerization of the binding sites for large-scale application. To identify heterodimerization domains to which single-chain variable fragments (scFv) can be fused, we compared the efficiency of heterodimerization of CL and CH1 constant domains with complete L and Fd chains in mammalian cells. We found that the isolated CL:CH1 domain interaction was inefficient for secretion of heterodimers. However, when the complete L and Fd chains were used, secretion of L:Fd heterodimers was highly successful. Because these Fab chains contribute a binding moiety, C-terminal fusion of a scFv molecule to the L and/or Fd chains generated BsAbs or trispecific Abs (TsAbs) of intermediate size (75–100 kDa). These disulfide-stabilized bispecific Fab-scFv (“bibody”) and trispecific Fab-(scFv)2 (“tribody”) heterodimers represent up to 90% of all secreted Ab fragments in the mammalian expression system and possess fully functional binding moieties. Furthermore, both molecules recruit and activate T cells in a tumor cell-dependent way, whereby the trispecific derivative can exert this activity to two different tumor cells. Thus we propose the use of the disulfide-stabilized L:Fd heterodimer as an efficient platform for production of intermediate-sized BsAbs and TsAbs in mammalian expression systems.


Molecular Immunology | 2012

Generation and characterization of a functional Nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor.

Mahdi Behdani; Sirous Zeinali; Hossein Khanahmad; Morteza Karimipour; Nader Asadzadeh; Keyhan Azadmanesh; Alireza Khabiri; Steve Schoonooghe; Mahdi Habibi Anbouhi; Gholamreza Hassanzadeh-Ghassabeh; Serge Muyldermans

Vascular endothelial growth factor receptor-2 (VEGFR2) is an important tumor-associated receptor and blockade of the VEGF receptor signaling can lead to the inhibition of neovascularization and tumor metastasis. Nanobodies are the smallest intact antigen binding fragments derived from heavy chain-only antibodies occurring in camelids. Here, we describe the identification of a VEGFR2-specific Nanobody, named 3VGR19, from dromedaries immunized with a cell line expressing high levels of VEGFR2. We demonstrate by FACS, that 3VGR19 Nanobody specifically binds VEGFR2 on the surface of 293KDR and HUVECs cells. Furthermore, the 3VGR19 Nanobody potently inhibits formation of capillary-like structures. These data show the potential of Nanobodies for the blockade of VEGFR2 signaling and provide a basis for the development of novel cancer therapeutics.


Journal of Chromatography B | 2003

Optimizing expression and purification from cell culture medium of trispecific recombinant antibody derivatives.

An Willems; Jannick Leoen; Steve Schoonooghe; Johan Grooten; Nico Mertens

Antibody fragments offer the possibility to build multifunctional manifolds tailored to meet a large variety of needs. We optimized the production of a manifold consisting of one (bibody) or two (tribody) single-chain variable fragments coupled to the C-terminus of Fab chains. Different strong mammalian promoters were compared and the influence of expression media on production and recovery was investigated. Since the physical and chemical nature of these molecules largely depends on the nature of the antibody building blocks incorporated, a generally applicable process for the purification of recombinant antibody derivatives from serum containing mammalian cell culture medium was designed. To this end we compared protein L, hydroxyapatite, immobilized metal affinity chromatography, cation-exchange chromatography and hydrophobic charge induction chromatography.


The Journal of Nuclear Medicine | 2013

SPECT Imaging of Joint Inflammation with Nanobodies Targeting the Macrophage Mannose Receptor in a Mouse Model for Rheumatoid Arthritis

Stéphanie Put; Steve Schoonooghe; Nick Devoogdt; Evelien Schurgers; Anneleen Avau; Tania Mitera; Matthias D’Huyvetter; Patrick De Baetselier; Geert Raes; Tony Lahoutte; Patrick Matthys

Rheumatoid arthritis (RA) is a chronic autoimmune disease occurring in approximately 1% of the worldwide population. The disease primarily affects the joints, where inflammatory cells, such as macrophages, invade the synovium and cause cartilage and bone destruction. Currently, it is difficult to efficiently diagnose and monitor early-stage RA. In this study, we investigated whether SPECT/micro-CT imaging with 99mTc-labeled Nanobodies directed against the macrophage mannose receptor (MMR) is a useful tool for monitoring and quantifying joint inflammation in collagen-induced arthritis (CIA), a mouse model for RA. The expression of MMR was analyzed on macrophages and osteoclasts generated in vitro and in cells obtained from various organs from mice with CIA. Methods: CIA was induced in DBA/1 mice by injection of collagen type II in complete Freund adjuvant, and cell suspensions from the inflamed joints and other organs were obtained. Macrophages and osteoclasts were generated in vitro from bone marrow cells. Expression of MMR was quantified by quantitative polymerase chain reaction and flow cytometry with specific Nanobodies and conventional antibodies. SPECT/micro-CT imaging was performed with 99mTc-labeled MMR and control Nanobodies. Results: MMR was highly expressed on macrophages and to a lesser extent on osteoclasts generated in vitro. In mice with CIA, MMR expression was detected on cells from the bone marrow, lymph nodes, and spleen. In synovial fluid of arthritic joints, MMR was expressed on CD11b+F4/80+ macrophages. On in vivo SPECT/micro-CT imaging with consecutive injections of MMR and control Nanobodies, a strong MMR signal was seen in the knees, ankles, and toes of arthritic mice. Quantification of the SPECT imaging confirmed the specificity of the MMR signal in inflamed joints as compared with the control Nanobody. Dissection of the paws revealed an additional significant MMR signal in nonarthritic paws of affected mice (i.e., mice displaying symptoms of arthritis in other paws). Conclusion: Our data show that MMR is expressed on macrophages in vitro and in vivo in synovial fluid of inflamed paws, whereas expression is relatively low in other tissues. The use of Nanobodies against MMR in SPECT/micro-CT imaging generates the possibility to track inflammatory cells in vivo in arthritic joints.


The Journal of Nuclear Medicine | 2015

PET Imaging of Macrophage Mannose Receptor–Expressing Macrophages in Tumor Stroma Using 18F-Radiolabeled Camelid Single-Domain Antibody Fragments

Anneleen Blykers; Steve Schoonooghe; Catarina Xavier; Kevin D’hoe; Damya Laoui; Matthias D’Huyvetter; Ilse Vaneycken; Frederik Cleeren; Guy Bormans; Johannes Heemskerk; Geert Raes; Patrick De Baetselier; Tony Lahoutte; Nick Devoogdt; Jo A. Van Ginderachter; Vicky Caveliers

Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing 18F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Methods: Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer 18F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-18F-fluorobenzoate (18F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Results: Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. 18F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%–10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a 99mTc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2–deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the 18F tracer for MMR and macrophages, respectively. Conclusion: Anti-MMR 3.49 was denoted as the lead cross-reactive MMR-targeting sdAb. 18F radiosynthesis was optimized, providing an optimal probe for PET imaging of the tumor-promoting macrophage subpopulation in the tumor stroma.


BMC Biotechnology | 2009

Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris

Steve Schoonooghe; Vladimir Kaigorodov; Monika Zawisza; Caroline Dumolyn; Jurgen Haustraete; Johan Grooten; Nico Mertens

BackgroundTumour associated antigens on the surface of tumour cells, such as MUC1, are being used as specific antibody targets for immunotherapy of human malignancies. In order to address the poor penetration of full sized monoclonal antibodies in tumours, intermediate sized antibodies are being developed. The cost-effective and efficient production of these molecules is however crucial for their further success as anti-cancer therapeutics. The methylotropic P. pastoris yeast grows in cheap mineral media and is known for its short process times and the efficient production of recombinant antibody fragments like scFvs, bivalent scFvs and Fabs.ResultsBased on the anti-MUC1 PH1 Fab, we have developed bivalent PH1 bibodies and trivalent PH1 tribodies of intermediate molecular mass by adding PH1 scFvs to the C-terminus of the Fab chains using flexible peptide linkers. These recombinant antibody derivatives were efficiently expressed in both mammalian and P. pastoris cells. Stable production in NS0 cells produced 130.5 mg pure bibody and 27 mg pure tribody per litre. This high yield is achieved as a result of the high overall purification efficiency of 77%. Expression and purification of PH1 bibodies and tribodies from Pichia supernatant yielded predominantly correctly heterodimerised products, free of light chain homodimers. The yeast-produced bi- and tribodies retained the same specific activity as their mammalian-produced counterparts. Additionally, the yields of 36.8 mg pure bibody and 12 mg pure tribody per litre supernatant make the production of these molecules in Pichia more efficient than most other previously described trispecific or trivalent molecules produced in E. coli.ConclusionBi- and tribody molecules are efficiently produced in P. pastoris. Furthermore, the yeast produced molecules retain the same specific affinity for their antigen. These results establish the value of P. pastoris as an efficient alternative expression system for the production of recombinant multivalent Fab-scFv antibody derivatives.


New Biotechnology | 2013

DEVELOPMENT OF VEGFR2-SPECIFIC NANOBODY PSEUDOMONAS EXOTOXIN A CONJUGATED TO PROVIDE EFFICIENT INHIBITION OF TUMOR CELL GROWTH

Mahdi Behdani; Sirous Zeinali; Morteza Karimipour; Hossein Khanahmad; Steve Schoonooghe; Azam Aslemarz; Negar Seyed; Reza Moazami-Godarzi; Farzad Baniahmad; Mahdi Habibi-Anbouhi; Gholamreza Hassanzadeh-Ghassabeh; Serge Muyldermans

Angiogenesis targeting is an attractive approach for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2) is such an important target that is overexpressed in tumor vasculature compared to the endothelium cells of resting blood vessels and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins represent a promising group of targeted therapeutics to combat tumors. They consist of an antibody linked to a toxin and are designed to kill specifically the tumor cells. In this study, we fused a VEGFR2-specific Nanobody, the antigen-binding single-domain fragment derived from functional Heavy-chain antibody of Camelidae, to the truncated form of Pseudomonas exotoxin A and evaluated its ability to bind the VEGFR2 molecule on the cell surface. We demonstrate that this immunotoxin inhibits the proliferation of VEGFR2-expressing cells in vitro. This finding is considered to be a significant achievement in tumor therapy and it forms a basis for further studies in animal models.


Biomolecular Engineering | 2001

A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain

Reinhilde Schoonjans; An Willems; Steve Schoonooghe; Jannick Leœn; Johan Grooten; Nico Mertens

Due to their specificity and versatility in use, bispecific antibodies (BsAbs) are promising therapeutic tools in tomorrows medicine, provided sufficient BsAb can be produced. Expression systems favoring efficient heterodimerization of intermediate-sized bispecific antibodies will significantly improve existing production methods. Recombinant BsAb can be made by fusing single chain variable fragments (scFv) to a heterodimerization domain. We compare the efficiency of the isolated CL and CH1 constant domains with complete Fab chains to drive heterodimerization of BsAbs in mammalian cells. We found that the isolated CL:CH1 domain interaction was inefficient for secretion of heterodimers. However, when the complete Fab chains were used, secretion of a heterodimerized bispecific antibody was successful. Since the Fab chain encodes a binding specificity on its own, bispecific (BsAb) or trispecific (TsAb) antibodies can be made by C-terminal fusion of scFv molecules to the L or Fd Fab chains. This gave rise to disulphide stabilized Fab-scFv BsAb (Bibody)or Fab-(scFv)2 TsAb (Tribody) of intermediate molecular size. Heterodimerization of the L and Fd-containing fusion proteins was very efficient, and up to 90% of all secreted antibody fragments was in the desired heterodimerized format. All building blocks remained functional in the fusion product, and the bispecific character of the molecules as well as the immunological functionality was demonstrated.

Collaboration


Dive into the Steve Schoonooghe's collaboration.

Top Co-Authors

Avatar

Geert Raes

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Nick Devoogdt

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Lahoutte

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damya Laoui

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge