Steve Self
Fred Hutchinson Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steve Self.
Journal of Virology | 2009
D. Noah Sather; Jakob Armann; Lance K. Ching; Angeliki Mavrantoni; George Sellhorn; Zachary Caldwell; Xuesong Yu; Blake Wood; Steve Self; Spyros A. Kalams; Leonidas Stamatatos
ABSTRACT The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.
Journal of Virology | 2010
Michael S. Seaman; Holly Janes; Natalie Hawkins; Lauren E. Grandpre; Colleen Devoy; Ayush Giri; Rory T. Coffey; Linda Harris; Blake Wood; Marcus Daniels; Tanmoy Bhattacharya; Alan S. Lapedes; Victoria R. Polonis; Francine McCutchan; Peter B. Gilbert; Steve Self; Bette T. Korber; David C. Montefiori; John R. Mascola
ABSTRACT The restricted neutralization breadth of vaccine-elicited antibodies is a major limitation of current human immunodeficiency virus-1 (HIV-1) candidate vaccines. In order to permit the efficient identification of vaccines with enhanced capacity for eliciting cross-reactive neutralizing antibodies (NAbs) and to assess the overall breadth and potency of vaccine-elicited NAb reactivity, we assembled a panel of 109 molecularly cloned HIV-1 Env pseudoviruses representing a broad range of genetic and geographic diversity. Viral isolates from all major circulating genetic subtypes were included, as were viruses derived shortly after transmission and during the early and chronic stages of infection. We assembled a panel of genetically diverse HIV-1-positive (HIV-1+) plasma pools to assess the neutralization sensitivities of the entire virus panel. When the viruses were rank ordered according to the average sensitivity to neutralization by the HIV-1+ plasmas, a continuum of average sensitivity was observed. Clustering analysis of the patterns of sensitivity defined four subgroups of viruses: those having very high (tier 1A), above-average (tier 1B), moderate (tier 2), or low (tier 3) sensitivity to antibody-mediated neutralization. We also investigated potential associations between characteristics of the viral isolates (clade, stage of infection, and source of virus) and sensitivity to NAb. In particular, higher levels of NAb activity were observed when the virus and plasma pool were matched in clade. These data provide the first systematic assessment of the overall neutralization sensitivities of a genetically and geographically diverse panel of circulating HIV-1 strains. These reference viruses can facilitate the systematic characterization of NAb responses elicited by candidate vaccine immunogens.
The Journal of Infectious Diseases | 2012
David C. Montefiori; Chitraporn Karnasuta; Ying Huang; Hasan Ahmed; Peter B. Gilbert; Mark S. de Souza; Robert McLinden; Sodsai Tovanabutra; Agnes Laurence-Chenine; Eric Sanders-Buell; M. Anthony Moody; Mattia Bonsignori; Christina Ochsenbauer; John C. Kappes; Haili Tang; Kelli M. Greene; Hongmei Gao; Celia C. LaBranche; Charla Andrews; Victoria R. Polonis; Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Steve Self; Phillip W. Berman; Donald P. Francis; Faruk Sinangil; Carter Lee; Jim Tartaglia
Background. A recombinant canarypox vector expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pro, and membrane-linked gp120 (vCP1521), combined with a bivalent gp120 protein boost (AIDSVAX B/E), provided modest protection against HIV-1 infection in a community-based population in Thailand (RV144 trial). No protection was observed in Thai injection drug users who received AIDSVAX B/E alone (Vax003 trial). We compared the neutralizing antibody response in these 2 trials. Methods. Neutralization was assessed with tier 1 and tier 2 strains of virus in TZM-bl and A3R5 cells. Results. Neutralization of several tier 1 viruses was detected in both RV144 and Vax003. Peak titers were higher in Vax003 and waned rapidly in both trials. The response in RV144 was targeted in part to V3 of gp120.vCP1521 priming plus 2 boosts with gp120 protein was superior to 2 gp120 protein inoculations alone, confirming a priming effect for vCP1521. Sporadic weak neutralization of tier 2 viruses was detected only in Vax003 and A3R5 cells. Conclusion. The results suggest either that weak neutralizing antibody responses can be partially protective against HIV-1 in low-risk heterosexual populations or that the modest efficacy seen in RV144 was mediated by other immune responses, either alone or in combination with neutralizing antibodies.
Nature Medicine | 2011
Morgane Rolland; Sodsai Tovanabutra; Allan C. deCamp; Nicole Frahm; Peter B. Gilbert; Eric Sanders-Buell; Laura Heath; Craig A. Magaret; Meera Bose; Andrea Bradfield; Annemarie O'Sullivan; Jacqueline Crossler; Teresa Jones; Marty Nau; Kim Wong; Hong Zhao; Dana N. Raugi; Stephanie Sorensen; Julia N. Stoddard; Brandon Maust; Wenjie Deng; John Hural; Sheri A. Dubey; Nelson L. Michael; John W. Shiver; Lawrence Corey; Fusheng Li; Steve Self; Jerome H. Kim; Susan Buchbinder
We analyzed HIV-1 genome sequences from 68 newly infected volunteers in the STEP HIV-1 vaccine trial. To determine whether the vaccine exerted selective T cell pressure on breakthrough viruses, we identified potential T cell epitopes in the founder sequences and compared them to epitopes in the vaccine. We found greater distances to the vaccine sequence for sequences from vaccine recipients than from placebo recipients. The most significant signature site distinguishing vaccine from placebo recipients was Gag amino acid 84, a site encompassed by several epitopes contained in the vaccine and restricted by human leukocyte antigen (HLA) alleles common in the study cohort. Moreover, the extended divergence was confined to the vaccine components of the virus (HIV-1 Gag, Pol and Nef) and not found in other HIV-1 proteins. These results represent what is to our knowledge the first evidence of selective pressure from vaccine-induced T cell responses on HIV-1 infection in humans.
PLOS ONE | 2013
Raphael Gottardo; Robert T. Bailer; Bette T. Korber; S. Gnanakaran; Joshua L. Phillips; Xiaoying Shen; Georgia D. Tomaras; Ellen Turk; Gregory Imholte; Larry Eckler; Holger Wenschuh; Johannes Zerweck; Kelli M. Greene; Hongmei Gao; Phillip W. Berman; Donald P. Francis; Faruk Sinangil; Carter Lee; Sorachai Nitayaphan; Supachai Rerks-Ngarm; Jaranit Kaewkungwal; Punnee Pitisuttithum; James Tartaglia; Merlin L. Robb; Nelson L. Michael; Jerome H. Kim; Susan Zolla-Pazner; Barton F. Haynes; John R. Mascola; Steve Self
Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR= 0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144.
The Journal of Infectious Diseases | 2001
Robert B. Belshe; Cladd E. Stevens; Geoffrey J. Gorse; Susan Buchbinder; Kent J. Weinhold; Haynes W. Sheppard; Donald M. Stablein; Steve Self; James McNamara; Sharon E. Frey; Jean Louis Excler; Michèl R. Klein; Raphaelle El Habib; Anne-Marie Duliege; Clayton Harro; Lawrence Corey; Michael Keefer; Mark J. Mulligan; Peter F. Wright; Connie Celum; Frank Judson; Kenneth H. Mayer; David McKirnan; Michael F. Marmor
Live attenuated viral vectors that express human immunodeficiency virus (HIV) antigens are being developed as potential vaccines to prevent HIV infection. The first phase 2 trial with a canarypox vector (vCP205, which expresses gp120, p55, and protease) was conducted in 435 volunteers with and without gp120 boosting, to expand the safety database and to compare the immunogenicity of the vector in volunteers who were at higher risk with that in volunteers at lower risk for HIV infection. Neutralizing antibodies to the MN strain were stimulated in 94% of volunteers given vCP205 plus gp120 and in 56% of volunteers given vCP205 alone. CD8(+) cytotoxic T lymphocyte cells developed at some time point in 33% of volunteers given vCP205, with or without gp120. Phase 3 field trials with these or similar vaccines are needed, to determine whether efficacy in preventing HIV infection or in slowing disease progression among vaccinees who become infected is associated with the level and types of immune responses that were induced by the vaccines in this study.
Journal of Acquired Immune Deficiency Syndromes | 2007
Nina D. Russell; Barney S. Graham; Michael C. Keefer; M. Juliana McElrath; Steve Self; Kent J. Weinhold; David C. Montefiori; Guido Ferrari; Helen Horton; Georgia D. Tomaras; Sanjay Gurunathan; Lynn Baglyos; Sharon E. Frey; Mark J. Mulligan; Clayton Harro; Susan Buchbinder; Lindsey R. Baden; William A. Blattner; Beryl A. Koblin; Lawrence Corey
Background:A goal of T-cell HIV vaccines is to define the correlation between a vaccine-induced immune response and protection from HIV infection. We conducted a phase 2 trial to determine if a canarypox vaccine candidate (vCP1452) administered with rgp120 subunit protein would “qualify” for a trial to define a correlate of efficacy. Methods:A total of 330 healthy volunteers were enrolled into 4 groups: 120 received vCP1452 alone (0, 1, 3, and 6 months), 120 received vCP1452 with 2 different regimens of rgp120 coadministration, and 90 received placebo. HIV-specific antibody responses were measured by enzyme-linked immunoassay (ELISA) and neutralizing activity. T-cell responses were measured by chromium release and interferon-γ (IFNγ) enzyme-linked immunospot (ELISpot) assay. Results:Significant neutralizing antibody responses to the HIV MN strain were detected in all vaccine groups, with net responses ranging from 57% (95% confidence interval [CI]: 40% to 71%) to 94% (95% CI: 85% to 99%). Net cumulative HIV-specific CD8+ IFNγ ELISpot assay responses were 13% (95% CI: −1% to 26%) for recipients of vCP1452 alone and 16% (95% CI: 2% to 29%) for recipients of vCP1452 plus rgp120. Conclusions:Overall, the HIV-specific CD8+ cytotoxic T lymphocyte (CTL) response was not sufficient to qualify the regimen for a subsequent trial designed to detect an immune correlate of protection requiring a minimum CD8+ CTL frequency of 30%.
The Journal of Infectious Diseases | 2010
Peter B. Gilbert; Maggie Wang; Terri Wrin; Chris Petropoulos; Marc Gurwith; Faruk Sinangil; Patricia D'Souza; Isaac R. Rodriguez-Chavez; Allan C. deCamp; Mike Giganti; Phillip W. Berman; Steve Self; David C. Montefiori
BACKGROUND A candidate vaccine consisting of human immunodeficiency virus type 1 (HIV-1) subunit gp120 protein was found previously to be nonprotective in an efficacy trial (Vax004) despite strong antibody responses against the vaccine antigens. Here we assessed the magnitude and breadth of neutralizing antibody responses in Vax004. METHODS Neutralizing antibodies were measured against highly sensitive (tier 1) and moderately sensitive (tier 2) strains of HIV-1 subtype B in 2 independent assays. Vaccine recipients were stratified by sex, race, and high versus low behavioral risk of HIV-1 acquisition. RESULTS Most vaccine recipients mounted potent neutralizing antibody responses against HIV-1(MN) and other tier 1 viruses. Occasional weak neutralizing activity was detected against tier 2 viruses. The response against tier 1 and tier 2 viruses was significantly stronger in women than in men. Race and behavioral risk of HIV-1 acquisition had no significant effect on the response. Prior vaccination had little effect on the neutralizing antibody response that arose after infection. CONCLUSIONS Weak overall neutralizing antibody responses against tier 2 viruses is consistent with a lack of protection in this trial. The magnitude and breadth of neutralization reported here should be useful for identifying improved vaccines.
PLOS ONE | 2010
Catarina E. Hioe; Terri Wrin; Michael S. Seaman; Xuesong Yu; Blake Wood; Steve Self; Constance Williams; Miroslaw K. Gorny; Susan Zolla-Pazner
Background The V3 loop of the HIV-1 envelope (Env) glycoprotein gp120 was identified as the “principal neutralizing domain” of HIV-1, but has been considered too variable to serve as a neutralizing antibody (Ab) target. Structural and immunochemical data suggest, however, that V3 contains conserved elements which explain its role in binding to virus co-receptors despite its sequence variability. Despite this evidence of V3 conservation, the ability of anti-V3 Abs to neutralize a significant proportion of HIV-1 isolates from different subtypes (clades) has remained controversial. Methods HIV-1 neutralization experiments were conducted in two independent laboratories to test human anti-V3 monoclonal Abs (mAbs) against pseudoviruses (psVs) expressing Envs of diverse HIV-1 subtypes from subjects with acute and chronic infections. Neutralization was defined by 50% inhibitory concentrations (IC50), and was statistically assessed based on the area under the neutralization titration curves (AUC). Results Using AUC analyses, statistically significant neutralization was observed by ≥1 anti-V3 mAbs against 56/98 (57%) psVs expressing Envs of diverse subtypes, including subtypes A, AG, B, C and D. Even when the 10 Tier 1 psVs tested were excluded from the analysis, significant neutralization was detected by ≥1 anti-V3 mAbs against 46/88 (52%) psVs from diverse HIV-1 subtypes. Furthermore, 9/24 (37.5%) Tier 2 viruses from the clade B and C standard reference panels were neutralized by ≥1 anti-V3 mAbs. Each anti-V3 mAb tested was able to neutralize 28–42% of the psVs tested. By IC50 criteria, 40/98 (41%) psVs were neutralized by ≥1 anti-V3 mAbs. Conclusions Using standard and new statistical methods of data analysis, 6/7 anti-V3 human mAbs displayed cross-clade neutralizing activity and revealed that a significant proportion of viruses can be neutralized by anti-V3 Abs. The new statistical method for analysis of neutralization data provides many advantages to previously used analyses.
Epidemiology | 2011
Wang Y; Zijian Feng; Yang Yang; Steve Self; Yongjun Gao; Ira M. Longini; Jon Wakefield; Jing Zhang; Liping Wang; Xi Chen; Lena Yao; Jeffrey D. Stanaway; Wang Z; Weizhong Yang
Background: There were large outbreaks of hand, foot, and mouth disease in both 2008 and 2009 in China. Methods: Using the national surveillance data since 2 May 2008, we summarized the epidemiologic characteristics of the recent outbreaks. Using a susceptible-infectious-recovered transmission model, we evaluated the transmissibility of the disease and potential risk factors. Results: Children ages 1.0 to 2.9 years were the most susceptible to hand, foot, and mouth disease (odds ratios [OR] >2.3 as compared with other age-groups). Infant cases had the highest incidences of severe disease (ORs >1.4) and death (ORs >2.4), as well as the longest delay from symptom onset to diagnosis (2.3 days). Boys were more susceptible than girls (OR = 1.56 [95% confidence interval = 1.56–1.57]). A 1-day delay in diagnosis was associated with increases in the odds of severe disease by 40% (39%–42%) and in the odds of death by 54% (44%–65%). Compared with Coxsackie A16, enterovirus 71 is more strongly associated with severe disease (OR = 16 [13–18]) and death (OR = 40 [13–127]). The estimated local effective reproductive numbers among prefectures ranged from 1.4 to 1.6 (median = 1.4) in spring and stayed below 1.2 in other seasons. A higher risk of transmission was associated with temperatures in the range of 70° F to 80°F, higher relative humidity, lower wind speed, more precipitation, greater population density, and 16 [13–18] periods during which schools were open. Conclusion: Hand, foot, and mouth disease is a moderately transmittable infectious disease, mainly among preschool children. Enterovirus 71 was responsible for most severe cases and fatalities. Mixing of asymptomatically infected children in schools might have contributed to spread the of infection. Timely diagnosis may be 40 [31–127] key to reducing the high mortality rate in infants.