Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve W. C. Chang is active.

Publication


Featured researches published by Steve W. C. Chang.


Nature Neuroscience | 2010

Stimulus onset quenches neural variability: a widespread cortical phenomenon

Mark M. Churchland; Byron M. Yu; John P. Cunningham; Leo P. Sugrue; Marlene R. Cohen; Greg Corrado; William T. Newsome; Andy Clark; Paymon Hosseini; Benjamin B. Scott; David C. Bradley; Matthew A. Smith; Adam Kohn; J. Anthony Movshon; Katherine M. Armstrong; Tirin Moore; Steve W. C. Chang; Lawrence H. Snyder; Stephen G. Lisberger; Nicholas J. Priebe; Ian M. Finn; David Ferster; Stephen I. Ryu; Gopal Santhanam; Maneesh Sahani; Krishna V. Shenoy

Neural responses are typically characterized by computing the mean firing rate, but response variability can exist across trials. Many studies have examined the effect of a stimulus on the mean response, but few have examined the effect on response variability. We measured neural variability in 13 extracellularly recorded datasets and one intracellularly recorded dataset from seven areas spanning the four cortical lobes in monkeys and cats. In every case, stimulus onset caused a decline in neural variability. This occurred even when the stimulus produced little change in mean firing rate. The variability decline was observed in membrane potential recordings, in the spiking of individual neurons and in correlated spiking variability measured with implanted 96-electrode arrays. The variability decline was observed for all stimuli tested, regardless of whether the animal was awake, behaving or anaesthetized. This widespread variability decline suggests a rather general property of cortex, that its state is stabilized by an input.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta)

Steve W. C. Chang; Joseph W. Barter; R. Becket Ebitz; Karli K. Watson; Michael L. Platt

People attend not only to their own experiences, but also to the experiences of those around them. Such social awareness profoundly influences human behavior by enabling observational learning, as well as by motivating cooperation, charity, empathy, and spite. Oxytocin (OT), a neurosecretory hormone synthesized by hypothalamic neurons in the mammalian brain, can enhance affiliation or boost exclusion in different species in distinct contexts, belying any simple mechanistic neural model. Here we show that inhaled OT penetrates the CNS and subsequently enhances the sensitivity of rhesus macaques to rewards occurring to others as well as themselves. Roughly 2 h after inhaling OT, monkeys increased the frequency of prosocial choices associated with reward to another monkey when the alternative was to reward no one. OT also increased attention to the recipient monkey as well as the time it took to render such a decision. In contrast, within the first 2 h following inhalation, OT increased selfish choices associated with delivery of reward to self over a reward to the other monkey, without affecting attention or decision latency. Despite the differences in species typical social behavior, exogenous, inhaled OT causally promotes social donation behavior in rhesus monkeys, as it does in more egalitarian and monogamous ones, like prairie voles and humans, when there is no perceived cost to self. These findings potentially implicate shared neural mechanisms.


Nature Neuroscience | 2013

Neuronal reference frames for social decisions in primate frontal cortex

Steve W. C. Chang; Jean François Gariépy; Michael L. Platt

Social decisions are crucial for the success of individuals and the groups that they comprise. Group members respond vicariously to benefits obtained by others, and impairments in this capacity contribute to neuropsychiatric disorders such as autism and sociopathy. We examined the manner in which neurons in three frontal cortical areas encoded the outcomes of social decisions as monkeys performed a reward-allocation task. Neurons in the orbitofrontal cortex (OFC) predominantly encoded rewards that were delivered to oneself. Neurons in the anterior cingulate gyrus (ACCg) encoded reward allocations to the other monkey, to oneself or to both. Neurons in the anterior cingulate sulcus (ACCs) signaled reward allocations to the other monkey or to no one. In this network of received (OFC) and foregone (ACCs) reward signaling, ACCg emerged as an important nexus for the computation of shared experience and social reward. Individual and species-specific variations in social decision-making might result from the relative activation and influence of these areas.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex

Steve W. C. Chang; Lawrence H. Snyder

The sensorimotor transformations for visually guided reaching were originally thought to take place in a series of discrete transitions from one systematic frame of reference to the next with neurons coding location relative to the fixation position (gaze-centered) in occipital and posterior parietal areas, relative to the shoulder in dorsal premotor cortex, and in muscle- or joint-based coordinates in motor output neurons. Recent empirical and theoretical work has suggested that spatial encodings that use a range of idiosyncratic representations may increase computational power and flexibility. We now show that neurons in the parietal reach region use nonuniform and idiosyncratic frames of reference. We also show that these nonsystematic reference frames coexist with a systematic compound gain field that modulates activity proportional to the distance between the eyes and the hand. Thus, systematic and idiosyncratic signals may coexist within individual neurons.


Neuron | 2009

Using a compound gain field to compute a reach plan.

Steve W. C. Chang; Charalampos Papadimitriou; Lawrence H. Snyder

A gain field, the scaling of a tuned neuronal response by a postural signal, may help support neuronal computation. Here, we characterize eye and hand position gain fields in the parietal reach region (PRR). Eye and hand gain fields in individual PRR neurons are similar in magnitude but opposite in sign to one another. This systematic arrangement produces a compound gain field that is proportional to the distance between gaze location and initial hand position. As a result, the visual response to a target for an upcoming reach is scaled by the initial gaze-to-hand distance. Such a scaling is similar to what would be predicted in a neural network that mediates between eye- and hand-centered representations of target location. This systematic arrangement supports a role of PRR in visually guided reaching and provides strong evidence that gain fields are used for neural computations.


Neuron | 2016

The Anterior Cingulate Gyrus and Social Cognition: Tracking the Motivation of Others

Matthew A. J. Apps; Matthew F. S. Rushworth; Steve W. C. Chang

The anterior cingulate cortex (ACC) is implicated in a broad range of behaviors and cognitive processes, but it has been unclear what contribution, if any, the ACC makes to social behavior. We argue that anatomical and functional evidence suggests that a specific sub-region of ACC—in the gyrus (ACCg)—plays a crucial role in processing social information. We propose that the computational properties of the ACCg support a contribution to social cognition by estimating how motivated other individuals are and dynamically updating those estimates when further evidence suggests they have been erroneous. Notably this model, based on vicarious motivation and error processing, provides a unified account of neurophysiological and neuroimaging evidence that the ACCg is sensitive to costs, benefits, and errors during social interactions. Furthermore, it makes specific, testable predictions about a key mechanism that may underpin variability in socio-cognitive abilities in health and disease.


The Journal of Neuroscience | 2008

Limb-Specific Representation for Reaching in the Posterior Parietal Cortex

Steve W. C. Chang; Anthony R. Dickinson; Lawrence H. Snyder

To reach for something we see, the brain must integrate the target location with the limb to be used for reaching. Neuronal activity in the parietal reach region (PRR) located in the posterior parietal cortex represents targets for reaching. Does this representation depend on the limb to be used? We found a continuum of limb-dependent and limb-independent responses: some neurons represented targets for movements of either limb, whereas others represented only contralateral-limb targets. Only a few cells represented ipsilateral-limb targets. Furthermore, these representations were not dependent on preferred direction. Additional experiments provide evidence that the PRR is specifically involved in contralateral-limb movements: firing rates are correlated with contralateral- but not ipsilateral-limb reaction times. The current study therefore provides novel evidence that the PRR operates as a limb-dependent stage that lies further along the sensory–motor transformation for visually guided reaching than previously expected.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Neuroethology of primate social behavior

Steve W. C. Chang; Lauren J. N. Brent; Geoffrey K. Adams; Jeffrey T. Klein; John M. Pearson; Karli K. Watson; Michael L. Platt

A neuroethological approach to human and nonhuman primate behavior and cognition predicts biological specializations for social life. Evidence reviewed here indicates that ancestral mechanisms are often duplicated, repurposed, and differentially regulated to support social behavior. Focusing on recent research from nonhuman primates, we describe how the primate brain might implement social functions by coopting and extending preexisting mechanisms that previously supported nonsocial functions. This approach reveals that highly specialized mechanisms have evolved to decipher the immediate social context, and parallel circuits have evolved to translate social perceptual signals and nonsocial perceptual signals into partially integrated social and nonsocial motivational signals, which together inform general-purpose mechanisms that command behavior. Differences in social behavior between species, as well as between individuals within a species, result in part from neuromodulatory regulation of these neural circuits, which itself appears to be under partial genetic control. Ultimately, intraspecific variation in social behavior has differential fitness consequences, providing fundamental building blocks of natural selection. Our review suggests that the neuroethological approach to primate behavior may provide unique insights into human psychopathology.


Frontiers in Neuroscience | 2011

Vicarious Reinforcement in Rhesus Macaques (Macaca Mulatta)

Steve W. C. Chang; Amy Winecoff; Michael L. Platt

What happens to others profoundly influences our own behavior. Such other-regarding outcomes can drive observational learning, as well as motivate cooperation, charity, empathy, and even spite. Vicarious reinforcement may serve as one of the critical mechanisms mediating the influence of other-regarding outcomes on behavior and decision-making in groups. Here we show that rhesus macaques spontaneously derive vicarious reinforcement from observing rewards given to another monkey, and that this reinforcement can motivate them to subsequently deliver or withhold rewards from the other animal. We exploited Pavlovian and instrumental conditioning to associate rewards to self (M1) and/or rewards to another monkey (M2) with visual cues. M1s made more errors in the instrumental trials when cues predicted reward to M2 compared to when cues predicted reward to M1, but made even more errors when cues predicted reward to no one. In subsequent preference tests between pairs of conditioned cues, M1s preferred cues paired with reward to M2 over cues paired with reward to no one. By contrast, M1s preferred cues paired with reward to self over cues paired with reward to both monkeys simultaneously. Rates of attention to M2 strongly predicted the strength and valence of vicarious reinforcement. These patterns of behavior, which were absent in non-social control trials, are consistent with vicarious reinforcement based upon sensitivity to observed, or counterfactual, outcomes with respect to another individual. Vicarious reward may play a critical role in shaping cooperation and competition, as well as motivating observational learning and group coordination in rhesus macaques, much as it does in humans. We propose that vicarious reinforcement signals mediate these behaviors via homologous neural circuits involved in reinforcement learning and decision-making.


Annals of the New York Academy of Sciences | 2014

The neuroethology of friendship

Lauren J. N. Brent; Steve W. C. Chang; Jean-François Gariépy; Michael L. Platt

Friendship pervades the human social landscape. These bonds are so important that disrupting them leads to health problems, and difficulties forming or maintaining friendships attend neuropsychiatric disorders like autism and depression. Other animals also have friends, suggesting that friendship is not solely a human invention but is instead an evolved trait. A neuroethological approach applies behavioral, neurobiological, and molecular techniques to explain friendship with reference to its underlying mechanisms, development, evolutionary origins, and biological function. Recent studies implicate a shared suite of neural circuits and neuromodulatory pathways in the formation, maintenance, and manipulation of friendships across humans and other animals. Health consequences and reproductive advantages in mammals additionally suggest that friendship has adaptive benefits. We argue that understanding the neuroethology of friendship in humans and other animals brings us closer to knowing fully what it means to be human.

Collaboration


Dive into the Steve W. C. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence H. Snyder

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Dickinson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey L. Calton

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge