Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Frese is active.

Publication


Featured researches published by Steven A. Frese.


PLOS Genetics | 2011

The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

Steven A. Frese; Andrew K. Benson; Gerald W. Tannock; Diane M. Loach; Jaehyoung Kim; Min Zhang; Phaik Lyn Oh; Nicholas C. K. Heng; Prabhu B. Patil; Nathalie Juge; Donald A. MacKenzie; Bruce M. Pearson; Alla Lapidus; Eileen Dalin; Hope Tice; Eugene Goltsman; Miriam Land; Loren Hauser; Natalia Ivanova; Nikos C. Kyrpides; Jens Walter

Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.


PLOS Genetics | 2013

Molecular Characterization of Host-Specific Biofilm Formation in a Vertebrate Gut Symbiont

Steven A. Frese; Donald A. MacKenzie; Daniel A. Peterson; Robert Schmaltz; Teresa Fangman; You Zhou; Chaomei Zhang; Andrew K. Benson; Liz Cody; Francis Mulholland; Nathalie Juge; Jens Walter

Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri to form epithelial biofilms in the mouse forestomach is strictly dependent on the strains host origin. To unravel the molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway) completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by the coevolved strains, and it allowed insight into the bacterial effectors of this process.


Cell | 2015

Cultivating Healthy Growth and Nutrition through the Gut Microbiota

Sathish Subramanian; Laura V. Blanton; Steven A. Frese; Mark R. Charbonneau; David A. Mills; Jeffrey I. Gordon

Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition.


The ISME Journal | 2011

Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23

Ian M. Sims; Steven A. Frese; Jens Walter; Diane M. Loach; Michelle Wilson; Kay Appleyard; Jocelyn Eason; Megan Livingston; Margaret A. Baird; Gregory M. Cook; Gerald W. Tannock

Lactobacillus reuteri strain 100-23 together with a Lactobacillus-free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase (ftf) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.


Food & Function | 2014

Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins

Ying Yng Choy; Paola Quifer-Rada; Dirk M. Holstege; Steven A. Frese; C. Chris Calvert; David A. Mills; Rosa M. Lamuela-Raventós; Andrew L. Waterhouse

Proanthocyanidin (PAC) consumption has been linked to better colonic health, but PACs are poorly absorbed, making them a target for colonic metabolism. The resulting metabolites are low molecular weight and could potentially be absorbed. To understand the effects of dietary PACs it would be important to resolve the metabolic issue and link these changes to microbial population changes in a suitable model for human digestion. Here, six crossbred female pigs were fed a diet containing 1% (w/w) of MegaNatural® Gold grape seed extract (GSE) daily for 6 days. Fecal samples were analyzed by normal phase LC coupled to fluorescence detection and LC-MS/ToF. DNA was extracted from pig fecal samples and the V3/V4 region of the 16S rRNA gene was sequenced using an Illumina MiSeq. Intact parent PACs (dimer-pentamer) were observed in the feces on days 3 and 6 at similar high levels (∼400 mg kg(-1) total) during ingestion of GSE but were absent 48 h post-feeding. The major phenolic metabolites were 4-hydroxyphenylvaleric acid and 3-hydroxybenzoic acid which increased by ∼30 and 3 mg kg(-1) respectively. The GSE diet also caused an ecological shift in the microbiome, dramatically increasing Lachnospiraceae, Clostridales, Lactobacillus and Ruminococcacceae. The relationship between dietary PACs and colon health may be attributable to the altered bacterial populations or phenolic compounds in the colon.


Applied and Environmental Microbiology | 2016

Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated bifidobacteria

Sercan Karav; Annabelle Le Parc; Juliana Maria Leite Nobrega de Moura Bell; Steven A. Frese; Nina Kirmiz; David E. Block; Daniela Barile; David A. Mills

ABSTRACT Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (<1%) sialylated N-glycans. These results provide mechanistic support that N-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides. IMPORTANCE It has been previously shown that glycoproteins serve as growth substrates for bifidobacteria. However, which part of a glycoprotein (glycans or polypeptides) is responsible for this function was not known. In this study, we used a novel enzyme to cleave conjugated N-glycans from milk glycoproteins and tested their consumption by various bifidobacteria. The results showed that the glycans selectively stimulated the growth of B. infantis, which is a key infant gut microbe. The selectivity of consumption of individual N-glycans was determined using advanced mass spectrometry (nano-liquid chromatography chip–quadrupole time of flight mass spectrometry [nano-LC-Chip-Q-TOF MS]) to reveal that B. infantis can consume the range of glycan structures released from whey protein concentrate.


Applied and Environmental Microbiology | 2015

In Vivo Selection To Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications

Janina A. Krumbeck; María X. Maldonado-Gómez; Inés Martínez; Steven A. Frese; Thomas E. Burkey; Karuna Rasineni; Amanda E. Ramer-Tait; Edward N. Harris; Robert W. Hutkins; Jens Walter

ABSTRACT One strategy for enhancing the establishment of probiotic bacteria in the human intestinal tract is via the parallel administration of a prebiotic, which is referred to as a synbiotic. Here we present a novel method that allows a rational selection of putative probiotic strains to be used in synbiotic applications: in vivo selection (IVS). This method consists of isolating candidate probiotic strains from fecal samples following enrichment with the respective prebiotic. To test the potential of IVS, we isolated bifidobacteria from human subjects who consumed increasing doses of galactooligosaccharides (GOS) for 9 weeks. A retrospective analysis of the fecal microbiota of one subject revealed an 8-fold enrichment in Bifidobacterium adolescentis strain IVS-1 during GOS administration. The functionality of GOS to support the establishment of IVS-1 in the gastrointestinal tract was then evaluated in rats administered the bacterial strain alone, the prebiotic alone, or the synbiotic combination. Strain-specific quantitative real-time PCR showed that the addition of GOS increased B. adolescentis IVS-1 abundance in the distal intestine by nearly 2 logs compared to rats receiving only the probiotic. Illumina 16S rRNA sequencing not only confirmed the increased establishment of IVS-1 in the intestine but also revealed that the strain was able to outcompete the resident Bifidobacterium population when provided with GOS. In conclusion, this study demonstrated that IVS can be used to successfully formulate a synergistic synbiotic that can substantially enhance the establishment and competitiveness of a putative probiotic strain in the gastrointestinal tract.


Food Chemistry | 2016

Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins

David C. Dallas; Florine Citerne; Tian Tian; Vitor L. de Melo Silva; Karen M. Kalanetra; Steven A. Frese; Randall C. Robinson; David A. Mills; Daniela Barile

SCOPE The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. METHODS AND RESULTS Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. CONCLUSION The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases.


mSphere | 2017

Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants

Steven A. Frese; Andra A. Hutton; Lindsey N. Contreras; Claire A. Shaw; Michelle C. Palumbo; Giorgio Casaburi; Gege Xu; Jasmine C.C. Davis; Carlito B. Lebrilla; Bethany M. Henrick; Samara L. Freeman; Daniela Barile; J. Bruce German; David A. Mills; Jennifer T. Smilowitz; Mark A. Underwood

The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function. ABSTRACT Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function.


Applied and Environmental Microbiology | 2017

Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species

Rebbeca M. Duar; Steven A. Frese; Xiaoxi B. Lin; Samodha C. Fernando; Thomas E. Burkey; Guergana Tasseva; Daniel A. Peterson; Jochen Blom; Cory Q. Wenzel; Christine M. Szymanski; Jens Walter

ABSTRACT The species Lactobacillus reuteri has diversified into host-specific lineages, implying a long-term association with different vertebrates. Strains from rodent lineages show specific adaptations to mice, but the processes underlying the evolution of L. reuteri in other hosts remain unknown. We administered three standardized inocula composed of strains from different host-confined lineages to mice, pigs, chickens, and humans. The ecological performance of each strain in the gastrointestinal tract of each host was determined by typing random colonies recovered from fecal samples collected over five consecutive days postadministration. Results revealed that rodent strains were predominant in mice, confirming previous findings of host adaptation. In chickens, poultry strains of the lineage VI (poultry VI) and human isolates from the same lineage (human VI) were recovered at the highest and second highest rates, respectively. Interestingly, human VI strains were virtually undetected in human feces. These findings, together with ancestral state reconstructions, indicate poultry VI and human VI strains share an evolutionary history with chickens. Genomic analysis revealed that poultry VI strains possess a large and variable accessory genome, whereas human VI strains display low genetic diversity and possess genes encoding antibiotic resistance and capsular polysaccharide synthesis, which might have allowed temporal colonization of humans. Experiments in pigs and humans did not provide evidence of host adaptation of L. reuteri to these hosts. Overall, our findings demonstrate host adaptation of L. reuteri to rodents and chickens, supporting a joint evolution of this bacterial species with several vertebrate hosts, although questions remain about its natural history in humans and pigs. IMPORTANCE Gut microbes are often hypothesized to have coevolved with their vertebrate hosts. However, the evidence is sparse and the evolutionary mechanisms have not been identified. We developed and applied an experimental approach to determine host adaptation of L. reuteri to different hosts. Our findings confirmed adaptation to rodents and provided evidence of adaptation to poultry, suggesting that L. reuteri evolved via natural selection in different hosts. By complementing phylogenetic analyses with experimental evidence, this study provides novel information about the mechanisms driving host-microbe coevolution with vertebrates and serve as a basis to inform the application of L. reuteri as a probiotic for different host species.

Collaboration


Dive into the Steven A. Frese's collaboration.

Top Co-Authors

Avatar

David A. Mills

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniela Barile

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel A. Peterson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jaime Salcedo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Hutkins

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda E. Ramer-Tait

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Andrew K. Benson

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge