Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Hofstadler is active.

Publication


Featured researches published by Steven A. Hofstadler.


Nature Reviews Microbiology | 2008

Ibis T5000: a universal biosensor approach for microbiology

David J. Ecker; Rangarajan Sampath; Christian Massire; Lawrence B. Blyn; Thomas A. Hall; Mark W. Eshoo; Steven A. Hofstadler

We describe a new technology, the Ibis T5000, for the identification of pathogens in clinical and environmental samples. The Ibis T5000 couples nucleic acid amplification to high-performance electrospray ionization mass spectrometry and base-composition analysis. The system enables the identification and quantification of a broad set of pathogens, including all known bacteria, all major groups of pathogenic fungi and the major families of viruses that cause disease in humans and animals, along with the detection of virulence factors and antibiotic resistance markers.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance

David J. Ecker; Rangarajan Sampath; Lawrence B. Blyn; Mark W. Eshoo; Cristina Ivy; Joseph A. Ecker; Brian Libby; Vivek Samant; Kristin A. Sannes-Lowery; Rachael Melton; Kevin L. Russell; Nikki E. Freed; Chris Barrozo; Jianguo Wu; Karl Rudnick; Anjali Desai; Emily Moradi; Duane Knize; David Robbins; James C. Hannis; Patina M. Harrell; Christian Massire; Thomas A. Hall; Yun Jiang; Raymond Ranken; Jared J. Drader; Neill White; John Mcneil; Stanley T. Crooke; Steven A. Hofstadler

Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample. High-resolution genotyping of specific species is achieved by using additional primers targeted to highly variable regions of specific bacterial genomes. This method was used to examine samples taken from military recruits during respiratory disease outbreaks and for follow up surveillance at several military training facilities. Analysis of respiratory samples revealed high concentrations of pathogenic respiratory species, including Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pyogenes. When S. pyogenes was identified in samples from the epidemic site, the identical genotype was found in almost all recruits. This analysis method will provide information fundamental to understanding the polymicrobial nature of explosive epidemics of respiratory disease.


Journal of Clinical Microbiology | 2006

Identification of Acinetobacter Species and Genotyping of Acinetobacter baumannii by Multilocus PCR and Mass Spectrometry

Joseph A. Ecker; Christian Massire; Thomas A. Hall; Raymond Ranken; Thuy-Trang D. Pennella; Cristina Ivy; Lawrence B. Blyn; Steven A. Hofstadler; Timothy P. Endy; Paul T. Scott; Luther E. Lindler; Tacita Hamilton; Charla Gaddy; Kerry Snow; Marie Pe; Joel Fishbain; David Craft; Gregory Deye; Scott Riddell; Eric Milstrey; Bruno Petruccelli; Sylvain Brisse; Vanessa Harpin; Amy Schink; David J. Ecker; Rangarajan Sampath; Mark W. Eshoo

ABSTRACT Members of the genus Acinetobacter are ubiquitous in soil and water and are an important cause of nosocomial infections. A rapid method is needed to genotype Acinetobacter isolates to determine epidemiology and clonality during infectious outbreaks. Multilocus PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) is a method that uses the amplicon base compositions to genotype bacterial species. In order to identify regions of the Acinetobacter genome useful for this method, we sequenced regions of six housekeeping genes (trpE, adk, efp, mutY, fumC, and ppa) from 267 isolates of Acinetobacter. Isolates were collected from infected and colonized soldiers and civilians involved in an outbreak in the military health care system associated with the conflict in Iraq, from previously characterized outbreaks in European hospitals, and from culture collections. Most of the isolates from the Iraqi conflict were Acinetobacter baumannii (189 of 216 isolates). Among these, 111 isolates had genotypes identical or very similar to those associated with well-characterized A. baumannii isolates from European hospitals. Twenty-seven isolates from the conflict were found to have genotypes representing different Acinetobacter species, including 8 representatives of Acinetobacter genomospecies 13TU and 13 representatives of Acinetobacter genomospecies 3. Analysis by the PCR/ESI-MS method using nine primer pairs targeting the most information-rich regions of the trpE, adk, mutY, fumC, and ppa genes distinguished 47 of the 48 A. baumannii genotypes identified by sequencing and identified at the species level at least 18 Acinetobacter species. Results obtained with our genotyping method were essentially in agreement with those obtained by pulse-field gel electrophoresis analysis. The PCR/ESI-MS genotyping method required 4 h of analysis time to first answer with additional samples subsequently analyzed every 10 min. This rapid analysis allows tracking of transmission for the implementation of appropriate infection control measures on a time scale previously not achievable.


Journal of the American Society for Mass Spectrometry | 1993

High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer

Brian E. Winger; Steven A. Hofstadler; James E. Bruce; Harold R. Udseth; Richard D. Smith

A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10−9 torr. The increased pumping speed attainable with cryopumping (> 105 L/s) allowed brief pressure excursions to above 10−4 torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10–25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4+ charge state (m/z 1434) of insulin.


Nature Reviews Drug Discovery | 2006

Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes

Steven A. Hofstadler; Kristin A. Sannes-Lowery

For many years, analytical mass spectrometry has had numerous supporting roles in the drug development process, including the assessment of compound purity; quantitation of absorption, distribution, metabolism and excretion; and compound-specific pharmacokinetic analyses. More recently, mass spectrometry has emerged as an effective technique for identifying lead compounds on the basis of the characterization of noncovalent ligand–macromolecular target interactions. This approach offers several attractive properties for screening applications in drug discovery compared with other strategies, including the small quantities of target and ligands required, and the capacity to study ligands or targets without having to label them. Here, we review the application of electrospray ionization mass spectrometry to the interrogation of noncovalent complexes, highlighting examples from drug discovery efforts aimed at a range of target classes.


PLOS ONE | 2007

Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

Rangarajan Sampath; Kevin L. Russell; Christian Massire; Mark W. Eshoo; Vanessa Harpin; Lawrence B. Blyn; Rachael Melton; Cristina Ivy; Thuy Trang D Pennella; Feng Li; Harold Levene; Thomas A. Hall; Brian Libby; Nancy Fan; Demetrius J. Walcott; Raymond Ranken; Michael Pear; Amy Schink; Jose R. Gutierrez; Jared J. Drader; David Moore; David Metzgar; Lynda Addington; Richard E. Rothman; Charlotte A. Gaydos; Samuel Yang; Kirsten St. George; Meghan E. Fuschino; Amy B. Dean; David E. Stallknecht

Background Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology. Methods and Principal Findings Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999–2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005–2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution. Conclusion/Significance Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance.


Expert Review of Molecular Diagnostics | 2010

New technology for rapid molecular diagnosis of bloodstream infections

David J. Ecker; Rangarajan Sampath; Haijing Li; Christian Massire; Heather Matthews; Donna Toleno; Thomas A. Hall; Lawrence B. Blyn; Mark W. Eshoo; Raymond Ranken; Steven A. Hofstadler; Yi-Wei Tang

Technologies for the correct and timely diagnosis of bloodstream infections are urgently needed. Molecular diagnostic methods have yet to have a major impact on the diagnosis of bloodstream infections; however, new methods are being developed that are beginning to address key issues. In this article, we discuss the key needs and objectives of molecular diagnostics for bloodstream infections and review some of the currently available methods and how these techniques meet key needs. We then focus on a new method that combines nucleic acid amplification with mass spectrometry in a novel approach to molecular diagnosis of bloodstream infections.


Annals of the New York Academy of Sciences | 2007

Rapid Identification of Emerging Infectious Agents Using PCR and Electrospray Ionization Mass Spectrometry

Rangarajan Sampath; Thomas A. Hall; Christian Massire; Feng Li; Lawrence B. Blyn; Mark W. Eshoo; Steven A. Hofstadler; David J. Ecker

Abstract:  Newly emergent infectious diseases are a global public health problem. The population dense regions of Southeast Asia are the epicenter of many emerging diseases, as evidenced by the outbreak of Nipah, SARS, avian influenza (H5N1), Dengue, and enterovirus 71 in this region in the past decade. Rapid identification, epidemiologic surveillance, and mitigation of transmission are major challenges in ensuring public health safety. Here we describe a powerful new approach for infectious disease surveillance that is based on polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry (ESI‐MS) for accurate mass measurements of the PCR products, and base composition signature analysis to identify organisms in a sample. This approach is capable of automated analysis of more than 1,500 PCR reactions a day. It is applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens and will facilitate rapid characterization of known and emerging pathogens.


Journal of Laboratory Automation | 2006

The Ibis T5000 Universal Biosensor: An Automated Platform for Pathogen Identification and Strain Typing

David J. Ecker; Jared J. Drader; Jose R. Gutierrez; Abel Gutierrez; James C. Hannis; Amy Schink; Rangarajan Sampath; Lawrence B. Blyn; Mark W. Eshoo; Thomas A. Hall; Maria Tobarmosquera; Yun Jiang; Kristin A. Sannes-Lowery; Lendell L. Cummins; Brian Libby; Demetrius J. Walcott; Christian Massire; Raymond Ranken; Sheri Manalili; Cristina Ivy; Rachael Melton; Harold Levene; Vanessa Harpin; Feng Li; Neill White; Michael Pear; Joseph A. Ecker; Vivek Samant; Duane Knize; David Robbins

We describe a new approach to the sensitive and specific identification of bacteria, viruses, fungi, and protozoa based on broad-range PCR and high-performance mass spectrometry. The Ibis T5000 is based on technology developed for the Department of Defense known as T.I.G.E.R. (Triangulation Identification for the Genetic Evaluation of Risks) for pathogen surveillance. The technology uses mass spectrometry—derived base composition signatures obtained from PCR amplification of broadly conserved regions of the pathogen genomes to identify most organisms present in a sample. The process of sample analysis has been automated using a combination of commercially available and custom instrumentation. A software system known as T-Track manages the sample flow, signal analysis, and data interpretation and provides simplified result reports to the user. No specialized expertise is required to use the instrumentation. In addition to pathogen surveillance, the Ibis T5000 is being applied to reducing health care—associated infections (HAIs), emerging and pandemic disease surveillance, human forensics analysis, and pharmaceutical product and food safety, and will be used eventually in human infectious disease diagnosis. In this review, we describe the automated Ibis T5000 instrument and provide examples of how it is used in HAI control.


Journal of the American Society for Mass Spectrometry | 1995

DISSOCIATION OF TETRAMERIC IONS OF NONCOVALENT STREPTAVIDIN COMPLEXES FORMED BY ELECTROSPRAY IONIZATION

Brenda L. Schwartz; James E. Bruce; Gordon A. Anderson; Steven A. Hofstadler; Alan L. Rockwood; Richard D. Smith; Ashutosh Chilkoti; Patrick S. Stayton

The noncovalent tetrameric association of the protein streptavidin formed by electrospray ionization (ESI) mass spectrometry has been observed intact and dissociated in the gas phase. An extended mass-to-charge ratio range quadrupole mass spectrometer was employed to examine the effects of harsher conditions in the ESI atmosphere-vacuum interface region on the streptavidin tetramer. Thermally induced dissociation caused the mass spectra to exhibit a series of complementary monomer and trimer ions that correspond to decomposition of the tetrameric species. Similar results were obtained with tandem mass spectrometric experiments on a Fourier transform ion cyclotron resonance mass spectrometer by application of sustained off-resonance irradiation (SORI) on a selected tetrameric charge state. The technique of single-frequency quadrupole excitation was used to accomplish selected-ion accumulation of the 14 + charge state of the tetramer during ion injection. Subsequent low energy SORI combined with broadband quadrupole cooling produced the 7 + monomer and 7 + trimer species, as well as the 6 + monomer and 8 + trimer complementary ions. The observed asymmetric breakup of the tetramer is qualitatively explained by using physical models.

Collaboration


Dive into the Steven A. Hofstadler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jared J. Drader

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John Mcneil

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge