Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Kwilas is active.

Publication


Featured researches published by Steven A. Kwilas.


The New England Journal of Medicine | 2017

A Recombinant Vesicular Stomatitis Virus Ebola Vaccine - Preliminary Report.

Jason Regules; John Beigel; Kristopher M. Paolino; Jocelyn Voell; Amy R. Castellano; Paula Muñoz; James E. Moon; Richard C. Ruck; Jason W. Bennett; Patrick S. Twomey; Ramiro L. Gutiérrez; Shon Remich; Holly R. Hack; Meagan L. Wisniewski; Matthew Josleyn; Steven A. Kwilas; Nicole M. Van Deusen; Olivier Tshiani Mbaya; Yan Zhou; Daphne Stanley; Robin L. Bliss; Deborah Cebrik; Kirsten S. Smith; Meng Shi; Julie E. Ledgerwood; Barney S. Graham; Nancy J. Sullivan; Linda L. Jagodzinski; Sheila A. Peel; Judie B. Alimonti

Background The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication‐competent, recombinant vesicular stomatitis virus (rVSV)–based vaccine candidate designed to prevent EVD. Methods We conducted two phase 1, placebo‐controlled, double‐blind, dose‐escalation trials of an rVSV‐based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV‐ZEBOV vaccine (3 million plaque‐forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. Results The most common adverse events were injection‐site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme‐linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV‐Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. Conclusions This Ebola vaccine candidate elicited anti‐Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV&Dgr;G‐ZEBOV‐GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408.)


Virology | 2013

Crimean–Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway☆

Aura R. Garrison; Sheli R. Radoshitzky; Krishna P. Kota; Gianluca Pegoraro; Gordon Ruthel; Jens H. Kuhn; Louis A. Altamura; Steven A. Kwilas; Sina Bavari; Volker Haucke; Connie S. Schmaljohn

The early events in Crimean-Congo hemorrhagic fever virus (CCHFV) have not been completely characterized. Earlier work indicated that CCHFV likely enters cells by clathrin-mediated endocytosis (CME). Here we provide confirmatory evidence for CME entry by showing that CCHFV infection is inhibited in cells treated with Pitstop 2, a drug that specifically and reversibly interferes with the dynamics of clathrin-coated pits. Additionally, we show that CCHFV infection is inhibited by siRNA depletion of the clathrin pit associated protein AP-2. Following CME entry, we show that CCHFV has a pH-dependent entry step, with virus inactivation occurring at pH 6.0 and below. To more precisely define the endosomal trafficking of CCHFV, we show for the first time that overexpression of the dominant negative forms of Rab5 protein but not Rab7 protein inhibits CCHFV infection. These results indicate that CCHFV likely enters cells through the early endosomal compartment.


Science Translational Medicine | 2014

DNA vaccine–derived human IgG produced in transchromosomal bovines protect in lethal models of hantavirus pulmonary syndrome

Jay W. Hooper; Rebecca L. Brocato; Steven A. Kwilas; Christopher D. Hammerbeck; Matthew Josleyn; Michael Royals; Jack Ballantyne; Hua Wu; Jin-an Jiao; Hiroaki Matsushita; Eddie Sullivan

Human polyclonal antibodies generated from DNA-vaccinated, transchromosomal bovines protect against hantavirus pulmonary syndrome. Taking Hantavirus by the Horns Antibodies are the original antiviral. Doctors have leveraged the ability of antibodies to neutralize infection for more than a century, and despite advances in drug development, therapeutic antibodies remain the first-line approach to treat diseases for which no other therapy or vaccine exists. Yet, producing human antibodies remains a challenge. Now, Hooper et al. use DNA vaccine technology in transchromosomal bovines to produce fully human neutralizing antibodies with potent activity against hantavirus, which can lead to a deadly pulmonary syndrome [hantavirus pulmonary syndrome (HPS)] in exposed individuals. Their antibodies protect in lethal animal models of HPS when administered after exposure, supporting further exploration of these next-generation polyclonal immunoglobulin-based medical products. Polyclonal immunoglobulin-based medical products have been used successfully to treat diseases caused by viruses for more than a century. We demonstrate the use of DNA vaccine technology and transchromosomal bovines (TcBs) to produce fully human polyclonal immunoglobulins (IgG) with potent antiviral neutralizing activity. Specifically, two hantavirus DNA vaccines [Andes virus (ANDV) DNA vaccine and Sin Nombre virus (SNV) DNA vaccine] were used to produce a candidate immunoglobulin product for the prevention and treatment of hantavirus pulmonary syndrome (HPS). A needle-free jet injection device was used to vaccinate TcB, and high-titer neutralizing antibodies (titers >1000) against both viruses were produced within 1 month. Plasma collected at day 10 after the fourth vaccination was used to produce purified α-HPS TcB human IgG. Treatment with 20,000 neutralizing antibody units (NAU)/kg starting 5 days after challenge with ANDV protected seven of eight animals, whereas zero of eight animals treated with the same dose of normal TcB human IgG survived. Likewise, treatment with 20,000 NAU/kg starting 5 days after challenge with SNV protected immunocompromised hamsters from lethal HPS, protecting five of eight animals. Our findings that the α-HPS TcB human IgG is capable of protecting in animal models of lethal HPS when administered after exposure provides proof of concept that this approach can be used to develop candidate next-generation polyclonal immunoglobulin-based medical products without the need for human donors, despeciation protocols, or inactivated/attenuated vaccine antigen.


Human Vaccines & Immunotherapeutics | 2015

Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges

Rebecca J. Grant-Klein; Louis A. Altamura; Catherine V. Badger; Callie E. Bounds; Nicole M. Van Deusen; Steven A. Kwilas; Hong A Vu; Kelly L Warfield; Jay W. Hooper; Drew Hannaman; Lesley C. Dupuy; Connie S. Schmaljohn

Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.


EBioMedicine | 2016

Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

Karen A. O. Martins; Christopher L. Cooper; Sabrina M. Stronsky; Sarah L. Norris; Steven A. Kwilas; Jesse T. Steffens; Jacqueline G. Benko; Sean A. van Tongeren; Sina Bavari

Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvants impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.


Canadian Medical Association Journal | 2017

Assessing the safety and immunogenicity of recombinant vesicular stomatitis virus Ebola vaccine in healthy adults: a randomized clinical trial

May Elsherif; Catherine Brown; Donna Mackinnon-Cameron; Li Li; Trina Racine; Judie Alimonti; Thomas L. Rudge; Carol L. Sabourin; Peter Silvera; Jay W. Hooper; Steven A. Kwilas; Nicole Kilgore; Christopher Badorrek; W. Jay Ramsey; D. Gray Heppner; Tracy Kemp; Thomas P. Monath; Teresa Nowak; Shelly McNeil; Joanne M. Langley; Scott A. Halperin

BACKGROUND: The 2013–2016 Ebola virus outbreak in West Africa was the most widespread in history. In response, alive attenuated recombinant vesicular stomatitis virus (rVSV) vaccine expressing Zaire Ebolavirus glycoprotein (rVSVΔG-ZEBOV-GP) was evaluated in humans. METHODS: In a phase 1, randomized, dose-ranging, observer-blind, placebo-controlled trial, healthy adults aged 18–65 years were randomized into 4 groups of 10 to receive one of 3 vaccine doses or placebo. Follow-up visits spanned 180 days postvaccination for safety monitoring, immunogenicity testing and any rVSV virus shedding. RESULTS: Forty participants were injected with rVSVΔG-ZEBOV-GP vaccine (n = 30) or saline placebo (n = 10). No serious adverse events related to the vaccine or participant withdrawals were reported. Solicited adverse events during the 14-day follow-up period were mild to moderate and self-limited, with the exception of injection-site pain and headache. Viremia following vaccination was transient and no longer detectable after study day 3, with no virus shedding in saliva or urine. All vaccinated participants developed serum immunoglobulin G (IgG), as measured by Ebola virus envelope glycoprotein-based enzyme-linked immunosorbent assay (ELISA). Immunogenicity was comparable across all dose groups, and sustained IgG titers were detectable through to the last visit, at study day 180. INTERPRETATION: In this phase 1 study, there were no safety concerns after a single dose of rVSVΔG-ZEBOV-GP vaccine. IgG ELISA showed persistent high titers at 180 days postimmunization. There was a period of reactogenicity, but in general, the vaccine was well tolerated. This study provides evidence of the safety and immunogenicity of rVSVΔG-ZEBOV-GP vaccine and importance of its further investigation. Trial registration: Clinical-Trials.gov no., NCT02374385


PLOS ONE | 2015

Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses.

Callie E. Bounds; Steven A. Kwilas; Ana I. Kuehne; Jennifer M. Brannan; Russell R. Bakken; John M. Dye; Jay W. Hooper; Lesley C. Dupuy; Barry Ellefsen; Drew Hannaman; Hua Wu; Jin-an Jiao; Eddie Sullivan; Connie S. Schmaljohn

DNA vaccination of transchromosomal bovines (TcBs) with DNA vaccines expressing the codon-optimized (co) glycoprotein (GP) genes of Ebola virus (EBOV) and Sudan virus (SUDV) produce fully human polyclonal antibodies (pAbs) that recognize both viruses and demonstrate robust neutralizing activity. Each TcB was vaccinated by intramuscular electroporation (IM-EP) a total of four times and at each administration received 10 mg of the EBOV-GPco DNA vaccine and 10 mg of the SUDV-GPco DNA vaccine at two sites on the left and right sides, respectively. After two vaccinations, robust antibody responses (titers > 1000) were detected by ELISA against whole irradiated EBOV or SUDV and recombinant EBOV-GP or SUDV-GP (rGP) antigens, with higher titers observed for the rGP antigens. Strong, virus neutralizing antibody responses (titers >1000) were detected after three vaccinations when measured by vesicular stomatitis virus-based pseudovirion neutralization assay (PsVNA). Maximal neutralizing antibody responses were identified by traditional plaque reduction neutralization tests (PRNT) after four vaccinations. Neutralizing activity of human immunoglobulins (IgG) purified from TcB plasma collected after three vaccinations and injected intraperitoneally (IP) into mice at a 100 mg/kg dose was detected in the serum by PsVNA up to 14 days after administration. Passive transfer by IP injection of the purified IgG (100 mg/kg) to groups of BALB/c mice one day after IP challenge with mouse adapted (ma) EBOV resulted in 80% protection while all mice treated with non-specific pAbs succumbed. Similarly, interferon receptor 1 knockout (IFNAR -/-) mice receiving the purified IgG (100 mg/kg) by IP injection one day after IP challenge with wild type SUDV resulted in 89% survival. These results are the first to demonstrate that filovirus GP DNA vaccines administered to TcBs by IM-EP can elicit neutralizing antibodies that provide post-exposure protection. Additionally, these data describe production of fully human IgG in a large animal system, a system which is capable of producing large quantities of a clinical grade therapeutic product.


Journal of Virology | 2016

Glycoprotein-specific antibodies produced by DNA vaccination protect guinea pigs from lethal Argentine and Venezuelan hemorrhagic fever

Joseph W. Golden; Piet Maes; Steven A. Kwilas; John Ballantyne; Jay W. Hooper

ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products.


Scientific Reports | 2017

An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection

Joseph W. Golden; Brett Beitzel; Jason T. Ladner; Eric M. Mucker; Steven A. Kwilas; Gustavo Palacios; Jay W. Hooper

Machupo virus (MACV) is a New World (NW) arenavirus and causative agent of Bolivian hemorrhagic fever (HF). Here, we identified a variant of MACV strain Carvallo termed Car91 that was attenuated in guinea pigs. Infection of guinea pigs with an earlier passage of Carvallo, termed Car68, resulted in a lethal disease with a 63% mortality rate. Sequencing analysis revealed that compared to Car68, Car91 had a 35 nucleotide (nt) deletion and a point mutation within the L-segment intergenic region (IGR), and three silent changes in the polymerase gene that did not impact amino acid coding. No changes were found on the S-segment. Because it was apathogenic, we determined if Car91 could protect guinea pigs against Guanarito virus (GTOV), a distantly related NW arenavirus. While naïve animals succumbed to GTOV infection, 88% of the Car91-exposed guinea pigs were protected. These findings indicate that attenuated MACV vaccines can provide heterologous protection against NW arenaviruses. The disruption in the L-segment IGR, including a single point mutant and 35 nt partial deletion, were the only major variance detected between virulent and avirulent isolates, implicating its role in attenuation. Overall, our data support the development of live-attenuated arenaviruses as broadly protective pan-arenavirus vaccines.


The Journal of Infectious Diseases | 2018

The Genetic Adjuvants Interleukin-12 and Granulocyte-Macrophage Colony Stimulating Factor Enhance the Immunogenicity of an Ebola Virus Deoxyribonucleic Acid Vaccine in Mice

John J. Suschak; Kenneth Bagley; Charles J. Shoemaker; Carolyn Six; Steven A. Kwilas; Lesley C. Dupuy; Connie S. Schmaljohn

In previous studies, we showed that deoxyribonucleic acid (DNA) vaccines expressing codon-optimized filovirus envelope glycoprotein genes protect mice and nonhuman primates from viral challenge when delivered by intramuscular (IM) electroporation (EP). To determine whether we could achieve equivalent immunogenicity and protective efficacy by a simplified delivery method, we generated DNA vaccine plasmids expressing genetic adjuvants to potentiate immune responses. We tested the Th1-inducing cytokine interleukin-12 and the granulocyte growth factor granulocyte-macrophage colony stimulating factor, both of which have demonstrated significant adjuvant effect when included in clinical DNA vaccine formulations. In addition, because interferon (IFN)-αβ is required for DNA vaccine-induced immunity, we tested inclusion of a potent stimulator of the IFN-αβ pathway. Our data suggest that IM vaccination of mice with plasmid DNA encoding genetic adjuvants enhances vaccine immunogenicity, resulting in increased anti-Ebola virus (EBOV) immunoglobulin G and T-cell responses. Codelivery of genetic adjuvants also improved EBOV neutralizing capability compared with vaccine alone. Finally, IM vaccination with plasmid EBOV and genetic adjuvants provided complete protection against EBOV challenge. Overall, our data suggest that codelivery of genetic adjuvants with filovirus DNA vaccines using IM delivery can provide comparable efficacy to the same DNA vaccines when delivered using IM-EP devices.

Collaboration


Dive into the Steven A. Kwilas's collaboration.

Top Co-Authors

Avatar

Jay W. Hooper

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Connie S. Schmaljohn

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Lesley C. Dupuy

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Joseph W. Golden

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Brett Beitzel

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Callie E. Bounds

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Carolyn Six

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Hammerbeck

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Eric M. Mucker

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge