Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A R Webb is active.

Publication


Featured researches published by Steven A R Webb.


Critical Care Medicine | 2013

Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012.

R. Phillip Dellinger; Mitchell M. Levy; Andrew Rhodes; Djillali Annane; Herwig Gerlach; Steven M. Opal; Jonathan Sevransky; Charles L. Sprung; Ivor S. Douglas; Roman Jaeschke; Tiffany M. Osborn; Mark E. Nunnally; Sean R. Townsend; Konrad Reinhart; Ruth M. Kleinpell; Derek C. Angus; Clifford S. Deutschman; Flávia Ribeiro Machado; Gordon D. Rubenfeld; Steven A R Webb; Richard Beale; Jean Louis Vincent; Rui Moreno

Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. Methods:The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Some recommendations were ungraded (UG). Recommendations were classified into three groups: 1) those directly targeting severe sepsis; 2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and 3) pediatric considerations. Results:Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 hr of recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 hrs of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1C); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients) (1C); fluid challenge technique continued as long as hemodynamic improvement, as based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥ 65 mm Hg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO2/FIO2 ratio of ⩽ 100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 hrs) for patients with early ARDS and a Pao2/Fio2 < 150 mm Hg (2C); a protocolized approach to blood glucose management commencing insulin dosing when two consecutive blood glucose levels are > 180 mg/dL, targeting an upper blood glucose ⩽ 180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 hrs after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 hrs of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5 to 10 mins (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”‘ adrenal insufficiency (2C). Conclusions:Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.


JAMA | 2009

Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome.

Andrew Davies; Daryl Jones; Michael Bailey; John Beca; Rinaldo Bellomo; Nikki Blackwell; Paul Forrest; David Gattas; Emily Granger; Robert Herkes; Andrew Jackson; Shay McGuinness; Priya Nair; Vincent Pellegrino; Ville Pettilä; Brian Plunkett; Roger Pye; Paul J. Torzillo; Steven A R Webb; Michael K. Wilson; Marc Ziegenfuss

CONTEXT The novel influenza A(H1N1) pandemic affected Australia and New Zealand during the 2009 southern hemisphere winter. It caused an epidemic of critical illness and some patients developed severe acute respiratory distress syndrome (ARDS) and were treated with extracorporeal membrane oxygenation (ECMO). OBJECTIVES To describe the characteristics of all patients with 2009 influenza A(H1N1)-associated ARDS treated with ECMO and to report incidence, resource utilization, and patient outcomes. DESIGN, SETTING, AND PATIENTS An observational study of all patients (n = 68) with 2009 influenza A(H1N1)-associated ARDS treated with ECMO in 15 intensive care units (ICUs) in Australia and New Zealand between June 1 and August 31, 2009. MAIN OUTCOME MEASURES Incidence, clinical features, degree of pulmonary dysfunction, technical characteristics, duration of ECMO, complications, and survival. RESULTS Sixty-eight patients with severe influenza-associated ARDS were treated with ECMO, of whom 61 had either confirmed 2009 influenza A(H1N1) (n = 53) or influenza A not subtyped (n = 8), representing an incidence rate of 2.6 ECMO cases per million population. An additional 133 patients with influenza A received mechanical ventilation but no ECMO in the same ICUs. The 68 patients who received ECMO had a median (interquartile range [IQR]) age of 34.4 (26.6-43.1) years and 34 patients (50%) were men. Before ECMO, patients had severe respiratory failure despite advanced mechanical ventilatory support with a median (IQR) Pao(2)/fraction of inspired oxygen (Fio(2)) ratio of 56 (48-63), positive end-expiratory pressure of 18 (15-20) cm H(2)O, and an acute lung injury score of 3.8 (3.5-4.0). The median (IQR) duration of ECMO support was 10 (7-15) days. At the time of reporting, 48 of the 68 patients (71%; 95% confidence interval [CI], 60%-82%) had survived to ICU discharge, of whom 32 had survived to hospital discharge and 16 remained as hospital inpatients. Fourteen patients (21%; 95% CI, 11%-30%) had died and 6 remained in the ICU, 2 of whom were still receiving ECMO. CONCLUSIONS During June to August 2009 in Australia and New Zealand, the ICUs at regional referral centers provided mechanical ventilation for many patients with 2009 influenza A(H1N1)-associated respiratory failure, one-third of whom received ECMO. These ECMO-treated patients were often young adults with severe hypoxemia and had a 21% mortality rate at the end of the study period.


The New England Journal of Medicine | 2009

Critical care services and 2009 H1N1 influenza in Australia and New Zealand

Steven A R Webb; Ville Pettilä; Ian Seppelt; Rinaldo Bellomo; Michael Bailey; David James Cooper; Michelle Cretikos; Andrew Ross Davies; Simon Finfer; Peter W J Harrigan; Graeme K Hart; Belinda Howe; Jonathan R. Iredell; Colin McArthur; Imogen Mitchell; Siouxzy Morrison; Alistair Nichol; David L. Paterson; Sandra L. Peake; Brent Richards; Dianne P Stephens; Andrew Turner; Michael Yung

BACKGROUND Planning for the treatment of infection with the 2009 pandemic influenza A (H1N1) virus through health care systems in developed countries during winter in the Northern Hemisphere is hampered by a lack of information from similar health care systems. METHODS We conducted an inception-cohort study in all Australian and New Zealand intensive care units (ICUs) during the winter of 2009 in the Southern Hemisphere. We calculated, per million inhabitants, the numbers of ICU admissions, bed-days, and days of mechanical ventilation due to infection with the 2009 H1N1 virus. We collected data on demographic and clinical characteristics of the patients and on treatments and outcomes. RESULTS From June 1 through August 31, 2009, a total of 722 patients with confirmed infection with the 2009 H1N1 virus (28.7 cases per million inhabitants; 95% confidence interval [CI], 26.5 to 30.8) were admitted to an ICU in Australia or New Zealand. Of the 722 patients, 669 (92.7%) were under 65 years of age and 66 (9.1%) were pregnant women; of the 601 adults for whom data were available, 172 (28.6%) had a body-mass index (the weight in kilograms divided by the square of the height in meters) greater than 35. Patients infected with the 2009 H1N1 virus were in the ICU for a total of 8815 bed-days (350 per million inhabitants). The median duration of treatment in the ICU was 7.0 days (interquartile range, 2.7 to 13.4); 456 of 706 patients (64.6%) with available data underwent mechanical ventilation for a median of 8 days (interquartile range, 4 to 16). The maximum daily occupancy of the ICU was 7.4 beds (95% CI, 6.3 to 8.5) per million inhabitants. As of September 7, 2009, a total of 103 of the 722 patients (14.3%; 95% CI, 11.7 to 16.9) had died, and 114 (15.8%) remained in the hospital. CONCLUSIONS The 2009 H1N1 virus had a substantial effect on ICUs during the winter in Australia and New Zealand. Our data can assist planning for the treatment of patients during the winter in the Northern Hemisphere.


The New England Journal of Medicine | 2014

Goal-directed resuscitation for patients with early septic shock.

Sandra L. Peake; Anthony Delaney; Michael Bailey; Rinaldo Bellomo; Peter Cameron; David James Cooper; Alisa Higgins; Anna Holdgate; Belinda Howe; Steven A R Webb; Patricia Williams

BACKGROUND Early goal-directed therapy (EGDT) has been endorsed in the guidelines of the Surviving Sepsis Campaign as a key strategy to decrease mortality among patients presenting to the emergency department with septic shock. However, its effectiveness is uncertain. METHODS In this trial conducted at 51 centers (mostly in Australia or New Zealand), we randomly assigned patients presenting to the emergency department with early septic shock to receive either EGDT or usual care. The primary outcome was all-cause mortality within 90 days after randomization. RESULTS Of the 1600 enrolled patients, 796 were assigned to the EGDT group and 804 to the usual-care group. Primary outcome data were available for more than 99% of the patients. Patients in the EGDT group received a larger mean (±SD) volume of intravenous fluids in the first 6 hours after randomization than did those in the usual-care group (1964±1415 ml vs. 1713±1401 ml) and were more likely to receive vasopressor infusions (66.6% vs. 57.8%), red-cell transfusions (13.6% vs. 7.0%), and dobutamine (15.4% vs. 2.6%) (P<0.001 for all comparisons). At 90 days after randomization, 147 deaths had occurred in the EGDT group and 150 had occurred in the usual-care group, for rates of death of 18.6% and 18.8%, respectively (absolute risk difference with EGDT vs. usual care, -0.3 percentage points; 95% confidence interval, -4.1 to 3.6; P=0.90). There was no significant difference in survival time, in-hospital mortality, duration of organ support, or length of hospital stay. CONCLUSIONS In critically ill patients presenting to the emergency department with early septic shock, EGDT did not reduce all-cause mortality at 90 days. (Funded by the National Health and Medical Research Council of Australia and the Alfred Foundation; ARISE ClinicalTrials.gov number, NCT00975793.).


Critical Care | 2009

Very old patients admitted to intensive care in Australia and New Zealand: a multi-centre cohort analysis.

Sean M. Bagshaw; Steven A R Webb; Anthony Delaney; Carol George; David Pilcher; Graeme K Hart; Rinaldo Bellomo

IntroductionOlder age is associated with higher prevalence of chronic illness and functional impairment, contributing to an increased rate of hospitalization and admission to intensive care. The primary objective was to evaluate the rate, characteristics and outcomes of very old (age ≥ 80 years) patients admitted to intensive care units (ICUs).MethodsRetrospective analysis of prospectively collected data from the Australian New Zealand Intensive Care Society Adult Patient Database. Data were obtained for 120,123 adult admissions for ≥ 24 hours across 57 ICUs from 1 January 2000 to 31 December 2005.ResultsA total of 15,640 very old patients (13.0%) were admitted during the study. These patients were more likely to be from a chronic care facility, had greater co-morbid illness, greater illness severity, and were less likely to receive mechanical ventilation. Crude ICU and hospital mortalities were higher (ICU: 12% vs. 8.2%, P < 0.001; hospital: 24.0% vs. 13%, P < 0.001). By multivariable analysis, age ≥ 80 years was associated with higher ICU and hospital death compared with younger age strata (ICU: odds ratio (OR) = 2.7, 95% confidence interval (CI) = 2.4 to 3.0; hospital: OR = 5.4, 95% CI = 4.9 to 5.9). Factors associated with lower survival included admission from a chronic care facility, co-morbid illness, nonsurgical admission, greater illness severity, mechanical ventilation, and longer stay in the ICU. Those aged ≥ 80 years were more likely to be discharged to rehabilitation/long-term care (12.3% vs. 4.9%, OR = 2.7, 95% CI = 2.6 to 2.9). The admission rates of very old patients increased by 5.6% per year. This potentially translates to a 72.4% increase in demand for ICU bed-days by 2015.ConclusionsThe proportion of patients aged ≥ 80 years admitted to intensive care in Australia and New Zealand is rapidly increasing. Although these patients have more co-morbid illness, are less likely to be discharged home, and have a greater mortality than younger patients, approximately 80% survive to hospital discharge. These data also imply a potential major increase in demand for ICU bed-days for very old patients within a decade.


Clinical Infectious Diseases | 2013

Continuous Infusion of Beta-Lactam Antibiotics in Severe Sepsis: A Multicenter Double-Blind, Randomized Controlled Trial

Joel M. Dulhunty; Jason A. Roberts; Joshua S. Davis; Steven A R Webb; Rinaldo Bellomo; Charles D. Gomersall; Charudatt Shirwadkar; Glenn M. Eastwood; John Myburgh; David L. Paterson; Jeffrey Lipman

BACKGROUND Beta-lactam antibiotics are a commonly used treatment for severe sepsis, with intermittent bolus dosing standard therapy, despite a strong theoretical rationale for continuous administration. The aim of this trial was to determine the clinical and pharmacokinetic differences between continuous and intermittent dosing in patients with severe sepsis. METHODS This was a prospective, double-blind, randomized controlled trial of continuous infusion versus intermittent bolus dosing of piperacillin-tazobactam, meropenem, and ticarcillin-clavulanate conducted in 5 intensive care units across Australia and Hong Kong. The primary pharmacokinetic outcome on treatment analysis was plasma antibiotic concentration above the minimum inhibitory concentration (MIC) on days 3 and 4. The assessed clinical outcomes were clinical response 7-14 days after study drug cessation, ICU-free days at day 28 and hospital survival. RESULTS Sixty patients were enrolled with 30 patients each allocated to the intervention and control groups. Plasma antibiotic concentrations exceeded the MIC in 82% of patients (18 of 22) in the continuous arm versus 29% (6 of 21) in the intermittent arm (P = .001). Clinical cure was higher in the continuous group (70% vs 43%; P = .037), but ICU-free days (19.5 vs 17 days; P = .14) did not significantly differ between groups. Survival to hospital discharge was 90% in the continuous group versus 80% in the intermittent group (P = .47). CONCLUSIONS Continuous administration of beta-lactam antibiotics achieved higher plasma antibiotic concentrations than intermittent administration with improvement in clinical cure. This study provides a strong rationale for further multicenter trials with sufficient power to identify differences in patient-centered endpoints.


Critical Care Medicine | 2009

A systematic review on clinical benefits of continuous administration of β-lactam antibiotics

Jason A. Roberts; Steven A R Webb; David L. Paterson; Kwok M. Ho; Jeffrey Lipman

Objective:The clinical benefits of extended infusion or continuous infusion of &bgr;-lactam antibiotics remain controversial. We systematically reviewed the literature to determine whether any clinical benefits exist for administration of &bgr;-lactam antibiotics by extended or continuous infusion. Data Source:PubMed (January 1950 to November 2007), EMBASE (1966 to November 2007), and the Cochrane Controlled Trial Register were searched (updated November 2007). Study Selections:Randomized controlled trials (RCTs) were meta-analyzed, and observational studies were described by two unblinded reviewers. Data Extraction:A total of 846 patients from eligible prospective randomized controlled studies were included in the meta-analysis. Two observational studies were deemed appropriate for description. Data Synthesis:A meta-analysis of prospective RCTs was undertaken using Review Manager. Among a total of 59 potentially relevant studies, 14 RCTs involving a total of 846 patients from nine countries were deemed appropriate for meta-analysis. The use of continuous infusion of a &bgr;-lactam antibiotic was not associated with an improvement in clinical cure (n = 755 patients; odds ratio: 1.04, 95% confidence interval: 0.74-1.46, p = 0.83, I2 = 0%) or mortality (n = 541 patients; odds ratio: 1.00, 95% confidence interval: 0.48-2.06, p = 1.00, I2 = 14.8%). All RCTs except one used a higher antibiotic dose in the bolus administration group. Two observational studies, not pooled because they did not meet the a priori criteria for meta-analysis, showed that &bgr;-lactam administration by extended or continuous infusion was associated with an improvement in clinical cure. The difference in the results between the meta-analysis results and the observational studies could be explained by the bias created by a higher dose of antibiotic in the bolus group in the RCTs and because many of the RCTs only recruited patients with a low acuity of illness. Conclusions:The limited data available suggest that continuous infusion of &bgr;-lactam antibiotics leads to the same clinical results as higher dosed bolus administration in hospitalized patients.


Critical Care Medicine | 2008

Determinants of long-term survival after intensive care

Teresa A. Williams; Geoffrey Dobb; Judith Finn; Matthew Knuiman; Elizabeth Geelhoed; Kok-Yeng Lee; Steven A R Webb

Objective:To identify prognostic determinants of long-term survival for patients treated in intensive care units (ICUs) who survived to hospital discharge. Design:An ICU clinical cohort linked to state-wide hospital records and death registers. Setting and Patients:Adult patients admitted to a 22-bed ICU at a major teaching hospital in Perth, Western Australia, between 1987 and 2002 who survived to hospital discharge (n = 19,921) were followed-up until December 31, 2003. Measurements:The main outcome measures are crude and adjusted survival. Main Results:The risk of death in the first year after hospital discharge was high for patients who survived the ICU compared with the general population (standardized mortality rate [SMR] at 1 yr = 2.90, 95% confidence interval [CI] 2.73–3.08) and remained higher than the general population for every year during 15 yrs of follow up (SMR at 15 yrs = 2.01, 95% CI 1.64–2.46). Factors that were independently associated with survival during the first year were older age (hazard ratio [HR] = 4.09; 95% CI 3.20–5.23), severe comorbidity (HR = 5.23; 95% CI 4.25–6.43), ICU diagnostic group (HR range 2.20 to 8.95), new malignancy (HR = 4.60; 95% CI 3.68–5.76), high acute physiology score on admission (HR = 1.55; 95% CI 1.23–1.96), and peak number of organ failures (HR = 1.51; 95% CI 1.11–2.04). All of these factors were independently associated with subsequent survival for those patients who were alive 1 yr after discharge from the hospital with the addition of male gender (HR = 1.17; 95% CI 1.10–1.25) and prolonged length of stay in ICU (HR = 1.42; 95% CI 1.29–1.55). Conclusions:Patients who survived an admission to the ICU have worse survival than the general population for at least 15 yrs. The factors that determine long-term survival include age, comorbidity, and primary diagnosis. Severity of illness was also associated with long-term survival and this suggests that an episode of critical illness, or its treatment, may shorten life-expectancy.


Critical Care | 2014

Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults.

Carol L. Hodgson; Kathy Stiller; Dale M. Needham; Claire J. Tipping; Megan Harrold; Claire E. Baldwin; Scott J Bradley; Sue Berney; Lawrence R. Caruana; Douglas J Elliott; Margot Green; Kimberley Haines; Alisa Higgins; Kirsi-Maija Kaukonen; Isabel Leditschke; Marc Nickels; Jennifer Paratz; Shane Patman; Elizabeth H. Skinner; Paul Young; Jennifer M. Zanni; Linda Denehy; Steven A R Webb

IntroductionThe aim of this study was to develop consensus recommendations on safety parameters for mobilizing adult, mechanically ventilated, intensive care unit (ICU) patients.MethodsA systematic literature review was followed by a meeting of 23 multidisciplinary ICU experts to seek consensus regarding the safe mobilization of mechanically ventilated patients.ResultsSafety considerations were summarized in four categories: respiratory, cardiovascular, neurological and other. Consensus was achieved on all criteria for safe mobilization, with the exception being levels of vasoactive agents. Intubation via an endotracheal tube was not a contraindication to early mobilization and a fraction of inspired oxygen less than 0.6 with a percutaneous oxygen saturation more than 90% and a respiratory rate less than 30 breaths/minute were considered safe criteria for in- and out-of-bed mobilization if there were no other contraindications. At an international meeting, 94 multidisciplinary ICU clinicians concurred with the proposed recommendations.ConclusionConsensus recommendations regarding safety criteria for mobilization of adult, mechanically ventilated patients in the ICU have the potential to guide ICU rehabilitation whilst minimizing the risk of adverse events.


Critical Care | 2015

Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study.

Carol L. Hodgson; Rinaldo Bellomo; Sue Berney; Michael Bailey; Heidi Buhr; Linda Denehy; Megan Harrold; Alisa Higgins; Jeffrey J. Presneill; Manoj Saxena; Elizabeth H. Skinner; Paul Young; Steven A R Webb

The aim of this study was to investigate current mobilization practice, strength at ICU discharge and functional recovery at 6 months among mechanically ventilated ICU patients. This was a prospective, multi-centre, cohort study conducted in twelve ICUs in Australia and New Zealand. Patients were previously functionally independent and expected to be ventilated for >48 hours. We measured mobilization during invasive ventilation, sedation depth using the Richmond Agitation and Sedation Scale (RASS), co-interventions, duration of mechanical ventilation, ICU-acquired weakness (ICUAW) at ICU discharge, mortality at day 90, and 6-month functional recovery including return to work. We studied 192 patients (mean age 58.1 ± 15.8 years; mean Acute Physiology and Chronic Health Evaluation (APACHE) (IQR) II score, 18.0 (14 to 24)). Mortality at day 90 was 26.6% (51/192). Over 1,351 study days, we collected information during 1,288 planned early mobilization episodes in patients on mechanical ventilation for the first 14 days or until extubation (whichever occurred first). We recorded the highest level of early mobilization. Despite the presence of dedicated physical therapy staff, no mobilization occurred in 1,079 (84%) of these episodes. Where mobilization occurred, the maximum levels of mobilization were exercises in bed (N = 94, 7%), standing at the bed side (N = 11, 0.9%) or walking (N = 26, 2%). On day three, all patients who were mobilized were mechanically ventilated via an endotracheal tube (N = 10), whereas by day five 50% of the patients mobilized were mechanically ventilated via a tracheostomy tube (N = 18). In 94 of the 156 ICU survivors, strength was assessed at ICU discharge and 48 (52%) had ICU-acquired weakness (Medical Research Council Manual Muscle Test Sum Score (MRC-SS) score <48/60). The MRC-SS score was higher in those patients who mobilized while mechanically ventilated (50.0 ± 11.2 versus 42.0 ± 10.8, P = 0.003). Patients who survived to ICU discharge but who had died by day 90 had a mean MRC score of 28.9 ± 13.2 compared with 44.9 ± 11.4 for day-90 survivors (P <0.0001). Early mobilization of patients receiving mechanical ventilation was uncommon. More than 50% of patients discharged from the ICU had developed ICU-acquired weakness, which was associated with death between ICU discharge and day-90. ClinicalTrials.gov NCT01674608. Registered 14 August 2012.

Collaboration


Dive into the Steven A R Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwok M. Ho

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Lipman

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey Dobb

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge