Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Stacker is active.

Publication


Featured researches published by Steven A. Stacker.


Nature Medicine | 2001

VEGF-D promotes the metastatic spread of tumor cells via the lymphatics

Steven A. Stacker; Carol Caesar; Megan E. Baldwin; Gillian E. Thornton; Remko Prevo; David G. Jackson; Shin-Ichi Nishikawa; Hajime Kubo; Marc G. Achen

Metastasis to local lymph nodes via the lymphatic vessels is a common step in the spread of solid tumors. To investigate the molecular mechanisms underlying the spread of cancer by the lymphatics, we examined the ability of vascular endothelial growth factor (VEGF)-D, a ligand for the lymphatic growth factor receptor VEGFR-3/Flt-4, to induce formation of lymphatics in a mouse tumor model. Staining with markers specific for lymphatic endothelium demonstrated that VEGF-D induced the formation of lymphatics within tumors. Moreover, expression of VEGF-D in tumor cells led to spread of the tumor to lymph nodes, whereas expression of VEGF, an angiogenic growth factor which activates VEGFR-2 but not VEGFR-3, did not. VEGF-D also promoted tumor angiogenesis and growth. Lymphatic spread induced by VEGF-D could be blocked with an antibody specific for VEGF-D. This study demonstrates that lymphatics can be established in solid tumors and implicates VEGF family members in determining the route of metastatic spread.


The EMBO Journal | 2001

Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3.

Taija Makinen; Tanja Veikkola; Satu Mustjoki; Terhi Karpanen; Bruno Catimel; Edouard C. Nice; Lyn M. Wise; Andrew A. Mercer; Heinrich Kowalski; Dontscho Kerjaschki; Steven A. Stacker; Marc G. Achen; Kari Alitalo

Vascular endothelial growth factor receptor‐3 (VEGFR‐3/Flt4) binds two known members of the VEGF ligand family, VEGF‐C and VEGF‐D, and has a critical function in the remodelling of the primary capillary vasculature of midgestation embryos. Later during development, VEGFR‐3 regulates the growth and maintenance of the lymphatic vessels. In the present study, we have isolated and cultured stable lineages of blood vascular and lymphatic endothelial cells from human primary microvascular endothelium by using antibodies against the extracellular domain of VEGFR‐3. We show that VEGFR‐3 stimulation alone protects the lymphatic endothelial cells from serum deprivation‐induced apoptosis and induces their growth and migration. At least some of these signals are transduced via a protein kinase C‐dependent activation of the p42/p44 MAPK signalling cascade and via a wortmannin‐sensitive induction of Akt phosphorylation. These results define the critical role of VEGF‐C/VEGFR‐3 signalling in the growth and survival of lymphatic endothelial cells. The culture of isolated lymphatic endothelial cells should now allow further studies of the molecular properties of these cells.


Cell | 1995

Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease

Margaret L. Hibbs; David M. Tarlinton; Jane E. Armes; Dianne Grail; George Hodgson; Rosemarie Maglitto; Steven A. Stacker; Ashley R. Dunn

Mice homozygous for a disruption at the Lyn locus display abnormalities associated with the B lymphocyte lineage and in mast cell function. Despite reduced numbers of recirculating B lymphocytes, Lyn-/- mice are immunoglobulin M (IgM) hyperglobulinemic. Immune responses to T-independent and T-dependent antigens are affected. Lyn-/- mice fail to mediate an allergic response to IgE cross-linking, indicating that activation of LYN plays an indispensable role in Fc epsilon RI signaling. Lyn-/- mice have circulating autoreactive antibodies, and many show severe glomerulonephritis caused by the deposition of IgG immune complexes in the kidney, a pathology reminiscent of systemic lupus erythematosus. Collectively, these results implicate LYN as having an indispensable role in immunoglobulin-mediated signaling, particularly in establishing B cell tolerance.


The EMBO Journal | 2001

Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice

Tanja Veikkola; Lotta Jussila; Taija Makinen; Terhi Karpanen; Michael Jeltsch; Tatiana V. Petrova; Hajime Kubo; Gavin Thurston; Donald M. McDonald; Marc G. Achen; Steven A. Stacker; Kari Alitalo

Vascular endothelial growth factor receptor‐3 (VEGFR‐3) has an essential role in the development of embryonic blood vessels; however, after midgestation its expression becomes restricted mainly to the developing lymphatic vessels. The VEGFR‐3 ligand VEGF‐C stimulates lymphangiogenesis in transgenic mice and in chick chorioallantoic membrane. As VEGF‐C also binds VEGFR‐2, which is expressed in lymphatic endothelia, it is not clear which receptors are responsible for the lymphangiogenic effects of VEGF‐C. VEGF‐D, which binds to the same receptors, has been reported to induce angiogenesis, but its lymphangiogenic potential is not known. In order to define the lymphangiogenic signalling pathway we have created transgenic mice overexpressing a VEGFR‐3‐specific mutant of VEGF‐C (VEGF‐C156S) or VEGF‐D in epidermal keratinocytes under the keratin 14 promoter. Both transgenes induced the growth of lymphatic vessels in the skin, whereas the blood vessel architecture was not affected. Evidence was also obtained that these growth factors act in a paracrine manner in vivo. These results demonstrate that stimulation of the VEGFR‐3 signal transduction pathway is sufficient to induce specifically lymphangiogenesis in vivo.


Nature Reviews Cancer | 2002

Lymphangiogenesis and cancer metastasis.

Steven A. Stacker; Marc G. Achen; Lotta Jussila; Megan E. Baldwin; Kari Alitalo

Lymphatic vessels are important for the spread of solid tumours, but the mechanisms that underlie lymphatic spread and the role of lymphangiogenesis (the growth of lymphatics) in tumour metastasis has been less clear. This article reviews recent experimental and clinico-pathological data indicating that growth factors that stimulate lymphangiogenesis in tumours are associated with an enhanced metastatic process.


Journal of Clinical Investigation | 2005

Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation

Peter Baluk; Tuomas Tammela; Erin Ator; Natalya Lyubynska; Marc G. Achen; Daniel J. Hicklin; Michael Jeltsch; Tatiana V. Petrova; Bronislaw Pytowski; Steven A. Stacker; Seppo Ylä-Herttuala; David G. Jackson; Kari Alitalo; Donald M. McDonald

Edema occurs in asthma and other inflammatory diseases when the rate of plasma leakage from blood vessels exceeds the drainage through lymphatic vessels and other routes. It is unclear to what extent lymphatic vessels grow to compensate for increased leakage during inflammation and what drives the lymphangiogenesis that does occur. We addressed these issues in mouse models of (a) chronic respiratory tract infection with Mycoplasma pulmonis and (b) adenoviral transduction of airway epithelium with VEGF family growth factors. Blood vessel remodeling and lymphangiogenesis were both robust in infected airways. Inhibition of VEGFR-3 signaling completely prevented the growth of lymphatic vessels but not blood vessels. Lack of lymphatic growth exaggerated mucosal edema and reduced the hypertrophy of draining lymph nodes. Airway dendritic cells, macrophages, neutrophils, and epithelial cells expressed the VEGFR-3 ligands VEGF-C or VEGF-D. Adenoviral delivery of either VEGF-C or VEGF-D evoked lymphangiogenesis without angiogenesis, whereas adenoviral VEGF had the opposite effect. After antibiotic treatment of the infection, inflammation and remodeling of blood vessels quickly subsided, but lymphatic vessels persisted. Together, these findings suggest that when lymphangiogenesis is impaired, airway inflammation may lead to bronchial lymphedema and exaggerated airflow obstruction. Correction of defective lymphangiogenesis may benefit the treatment of asthma and other inflammatory airway diseases.


Nature Reviews Cancer | 2002

Metastasis: Lymphangiogenesis and cancer metastasis

Steven A. Stacker; Marc G. Achen; Lotta Jussila; Megan E. Baldwin; Kari Alitalo

Lymphatic vessels are important for the spread of solid tumours, but the mechanisms that underlie lymphatic spread and the role of lymphangiogenesis (the growth of lymphatics) in tumour metastasis has been less clear. This article reviews recent experimental and clinico-pathological data indicating that growth factors that stimulate lymphangiogenesis in tumours are associated with an enhanced metastatic process.


Circulation Research | 2003

VEGF-D Is the Strongest Angiogenic and Lymphangiogenic Effector Among VEGFs Delivered Into Skeletal Muscle via Adenoviruses

Tuomas T. Rissanen; Johanna E. Markkanen; Marcin Gruchała; Tommi Heikura; Antti Puranen; Mikko I. Kettunen; Ivana Kholová; Risto A. Kauppinen; Marc G. Achen; Steven A. Stacker; Kari Alitalo; Seppo Ylä-Herttuala

Abstract— Optimal angiogenic and lymphangiogenic gene therapy requires knowledge of the best growth factors for each purpose. We studied the therapeutic potential of human vascular endothelial growth factor (VEGF) family members VEGF-A, VEGF-B, VEGF-C, and VEGF-D as well as a VEGFR-3–specific mutant (VEGF-C156S) using adenoviral gene transfer in rabbit hindlimb skeletal muscle. The significance of proteolytic processing of VEGF-D was explored using adenoviruses encoding either full-length or mature (&Dgr;N&Dgr;C) VEGF-D. Adenoviruses expressing potent VEGFR-2 ligands, VEGF-A and VEGF-D&Dgr;N&Dgr;C, induced the strongest angiogenesis and vascular permeability effects as assessed by capillary vessel and perfusion measurements, modified Miles assay, and MRI. The most significant feature of angiogenesis induced by both VEGF-A and VEGF-D&Dgr;N&Dgr;C was a remarkable enlargement of microvessels with efficient recruitment of pericytes suggesting formation of arterioles or venules. VEGF-A also moderately increased capillary density and created glomeruloid bodies, clusters of tortuous vessels, whereas VEGF-D&Dgr;N&Dgr;C–induced angiogenesis was more diffuse. Vascular smooth muscle cell proliferation occurred in regions with increased plasma protein extravasation, indicating that arteriogenesis may be promoted by VEGF-A and VEGF-D&Dgr;N&Dgr;C. Full-length VEGF-C and VEGF-D induced predominantly and the selective VEGFR-3 ligand VEGF-C156S exclusively lymphangiogenesis. Unlike angiogenesis, lymphangiogenesis was not dependent on nitric oxide. The VEGFR-1 ligand VEGF-B did not promote either angiogenesis or lymphangiogenesis. Finally, we found a positive correlation between capillary size and vascular permeability. This study compares, for the first time, angiogenesis and lymphangiogenesis induced by gene transfer of different human VEGFs, and shows that VEGF-D is the most potent member when delivered via an adenoviral vector into skeletal muscle.


Nature | 2008

Sox18 induces development of the lymphatic vasculature in mice

Mathias Francois; Andrea Caprini; Brett M. Hosking; Fabrizio Orsenigo; Dagmar Wilhelm; Catherine M. Browne; Karri Paavonen; Tara Karnezis; Ramin Shayan; Meredith Downes; Tara Davidson; D. Tutt; Kathryn S. E. Cheah; Steven A. Stacker; George E. O. Muscat; Marc G. Achen; Elisabetta Dejana; Peter Koopman

The lymphatic system plays a key role in tissue fluid regulation and tumour metastasis, and lymphatic defects underlie many pathological states including lymphoedema, lymphangiectasia, lymphangioma and lymphatic dysplasia. However, the origins of the lymphatic system in the embryo, and the mechanisms that direct growth of the network of lymphatic vessels, remain unclear. Lymphatic vessels are thought to arise from endothelial precursor cells budding from the cardinal vein under the influence of the lymphatic hallmark gene Prox1 (prospero homeobox 1; ref. 4). Defects in the transcription factor gene SOX18 (SRY (sex determining region Y) box 18) cause lymphatic dysfunction in the human syndrome hypotrichosis-lymphoedema-telangiectasia, suggesting that Sox18 may also play a role in lymphatic development or function. Here we use molecular, cellular and genetic assays in mice to show that Sox18 acts as a molecular switch to induce differentiation of lymphatic endothelial cells. Sox18 is expressed in a subset of cardinal vein cells that later co-express Prox1 and migrate to form lymphatic vessels. Sox18 directly activates Prox1 transcription by binding to its proximal promoter. Overexpression of Sox18 in blood vascular endothelial cells induces them to express Prox1 and other lymphatic endothelial markers, while Sox18-null embryos show a complete blockade of lymphatic endothelial cell differentiation from the cardinal vein. Our findings demonstrate a critical role for Sox18 in developmental lymphangiogenesis, and suggest new avenues to investigate for therapeutic management of human lymphangiopathies.


The FASEB Journal | 2000

VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues

Taina A. Partanen; Johanna Arola; Anne Saaristo; Lotta Jussila; Ari Ora; Markku Miettinen; Steven A. Stacker; Marc G. Achen; Kari Alitalo

Recently, vascular endothelial growth factor receptor 3 (VEGFR‐3) has been shown to provide a specific marker for lymphatic endothelia in certain human tissues. In this study, we have investigated the expression of VEGFR‐3 and its ligands VEGF‐C and VEGF‐D in fetal and adult tissues. VEGFR‐3 was consistently detected in the endothelium of lymphatic vessels such as the thoracic duct, but fenestrated capillaries of several organs including the bone marrow, splenic and hepatic sinusoids, kidney glomeruli and endocrine glands also expressed this receptor. VEGF‐C and VEGF‐D, which bind both VEGFR‐2 and VEGFR‐3 were expressed in vascular smooth muscle cells. In addition, intense cytoplasmic staining for VEGF‐C was observed in neuroendocrine cells such as the α cells of the islets of Langerhans, prolactin secreting cells of the anterior pituitary, adrenal medullary cells, and dispersed neuroendocrine cells of the gastrointestinal tract. VEGF‐D was observed in the innermost zone of the adrenal cortex and in certain dispersed neuroendocrine cells. These results suggest that VEGF‐C and VEGF‐D have a paracrine function and perhaps a role in peptide release from secretory granules of certain neuroendocrine cells to surrounding capillaries.—Partanen, T. A., Arola, J., Saaristo, A., Jussila, L., Ora, A., Miettinen, M., Stacker, S. A., Achen, M. G., Alitalo, K. VEGF‐C and VEGF‐D expression in neuroendocrine cells and their receptor, VEGFR‐3, in fenestrated blood vessels in human tissues. FASEB J. 14, 2087–2096 (2000)

Collaboration


Dive into the Steven A. Stacker's collaboration.

Top Co-Authors

Avatar

Marc G. Achen

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tara Karnezis

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Sally Roufail

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Andrew F. Wilks

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Megan E. Baldwin

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Michael M. Halford

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Ramin Shayan

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar

Bradley McColl

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Carol Caesar

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge