Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Yukl is active.

Publication


Featured researches published by Steven A. Yukl.


PLOS Pathogens | 2013

Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies

Susanne Eriksson; Erin H. Graf; Viktor Dahl; Matthew C. Strain; Steven A. Yukl; Elena S. Lysenko; Ronald J. Bosch; Jun Lai; Stanley Chioma; Fatemeh Emad; Mohamed Abdel-Mohsen; Frederick Hecht; Peter W. Hunt; Ma Somsouk; Joseph K. Wong; Rowena Johnston; Robert F. Siliciano; Douglas D. Richman; Una O'Doherty; Sarah Palmer; Steven G. Deeks; Janet D. Siliciano

HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4+ T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4+ T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4+ T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.


AIDS | 2010

Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy

Steven A. Yukl; Amandeep K. Shergill; Kenneth R. McQuaid; Sara Gianella; Harry Lampiris; C. Bradley Hare; Mark Pandori; Elizabeth Sinclair; Huldrych F. Günthard; Marek Fischer; Joseph K. Wong; Diane V. Havlir

Objective:To determine whether raltegravir-containing antiretroviral therapy (ART) intensification reduces HIV levels in the gut. Design:Open-label study in HIV-positive adults on ART with plasma HIV RNA below 40 copies/ml. Methods:Seven HIV-positive adults received 12 weeks of ART intensification with raltegravir alone or in combination with efavirenz or darunavir. Gut cells were obtained by upper and lower endoscopy with biopsies from duodenum, ileum, colon, and rectum at baseline and 12 weeks. Study outcomes included plasma HIV RNA, HIV DNA and RNA from peripheral blood mononuclear cells (PBMC) and four gut sites, T-cell subsets, and activation markers. Results:Intensification produced no consistent decrease in HIV RNA in the plasma, PBMC, duodenum, colon, or rectum. However, five of seven participants had a decrease in unspliced HIV RNA per 106 CD4+ T cells in the ileum. There was a trend towards decreased T-cell activation in all sites, which was greatest for CD8+ T cells in the ileum and PBMC, and a trend towards increased CD4+ T cells in the ileum. Conclusion:Most HIV RNA and DNA in the blood and gut is not the result of ongoing replication that can be impacted by short-term intensification with raltegravir. However, the ileum may support ongoing productive infection in some patients on ART, even if the contribution to plasma RNA is not discernible.


The Journal of Infectious Diseases | 2010

Differences in HIV Burden and Immune Activation within the Gut of HIV-Positive Patients Receiving Suppressive Antiretroviral Therapy

Steven A. Yukl; Sara Gianella; Elizabeth Sinclair; Lorrie Epling; Qingsheng Li; Lijie Duan; Alex Choi; Valerie Girling; Terence Ho; Peilin Li; Katsuya Fujimoto; Harry Lampiris; C. Bradley Hare; Mark Pandori; Ashley T. Haase; Huldrych F. Günthard; Marek Fischer; Amandeep K. Shergill; Kenneth R. McQuaid; Diane V. Havlir; Joseph K. Wong

BACKGROUND The gut is a major reservoir for human immunodeficiency virus (HIV) in patients receiving antiretroviral therapy (ART). We hypothesized that distinct immune environments within the gut may support varying levels of HIV. METHODS In 8 HIV-1-positive adults who were receiving ART and had CD4(+) T cell counts of >200 cells/μL and plasma viral loads of <40 copies/mL, levels of HIV and T cell activation were measured in blood samples and endoscopic biopsy specimens from the duodenum, ileum, ascending colon, and rectum. RESULTS HIV DNA and RNA levels per CD4(+) T cell were higher in all 4 gut sites compared with those in the blood. HIV DNA levels increased from the duodenum to the rectum, whereas the median HIV RNA level peaked in the ileum. HIV DNA levels correlated positively with T cell activation markers in peripheral blood mononuclear cells (PBMCs) but negatively with T cell activation markers in the gut. Multiply spliced RNA was infrequently detected in gut, and ratios of unspliced RNA to DNA were lower in the colon and rectum than in PBMCs, which reflects paradoxically low HIV transcription, given the higher level of T cell activation in the gut. CONCLUSIONS HIV DNA and RNA are both concentrated in the gut, but the inverse relationship between HIV DNA levels and T cell activation in the gut and the paradoxically low levels of HIV expression in the large bowel suggest that different processes drive HIV persistence in the blood and gut. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00884793 (PLUS1).


PLOS Pathogens | 2013

Challenges in Detecting HIV Persistence during Potentially Curative Interventions: A Study of the Berlin Patient

Steven A. Yukl; Eli Boritz; Michael P. Busch; Christopher Bentsen; Tae Wook Chun; Evelyn E. Eisele; Ashley T. Haase; Ya Chi Ho; Gero Hütter; J. Shawn Justement; Sheila M. Keating; Tzong Hae Lee; Peilin Li; Danielle Murray; Sarah Palmer; Christopher D. Pilcher; Satish K. Pillai; Richard W. Price; Meghan Rothenberger; Timothy W. Schacker; Janet D. Siliciano; Robert F. Siliciano; Elizabeth Sinclair; Matt C. Strain; Joseph K. Wong; Douglas D. Richman; Steven G. Deeks

There is intense interest in developing curative interventions for HIV. How such a cure will be quantified and defined is not known. We applied a series of measurements of HIV persistence to the study of an HIV-infected adult who has exhibited evidence of cure after allogeneic hematopoietic stem cell transplant from a homozygous CCR5Δ32 donor. Samples from blood, spinal fluid, lymph node, and gut were analyzed in multiple laboratories using different approaches. No HIV DNA or RNA was detected in peripheral blood mononuclear cells (PBMC), spinal fluid, lymph node, or terminal ileum, and no replication-competent virus could be cultured from PBMCs. However, HIV RNA was detected in plasma (2 laboratories) and HIV DNA was detected in the rectum (1 laboratory) at levels considerably lower than those expected in ART-suppressed patients. It was not possible to obtain sequence data from plasma or gut, while an X4 sequence from PBMC did not match the pre-transplant sequence. HIV antibody levels were readily detectable but declined over time; T cell responses were largely absent. The occasional, low-level PCR signals raise the possibility that some HIV nucleic acid might persist, although they could also be false positives. Since HIV levels in well-treated individuals are near the limits of detection of current assays, more sensitive assays need to be developed and validated. The absence of recrudescent HIV replication and waning HIV-specific immune responses five years after withdrawal of treatment provide proof of a clinical cure.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Role of retroviral restriction factors in the interferon-α–mediated suppression of HIV-1 in vivo

Satish K. Pillai; Mohamed Abdel-Mohsen; John C. Guatelli; Mark Skasko; Alexander Monto; Katsuya Fujimoto; Steven A. Yukl; Warner C. Greene; Helen Kovari; Andri Rauch; Jacques Fellay; Manuel Battegay; Bernard Hirschel; Andrea Witteck; Enos Bernasconi; Bruno Ledergerber; Huldrych F. Günthard; Joseph K. Wong

The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α–mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by −0.921 (±0.858) log10 copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearsons r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearmans ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2–mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1–infected individuals.


The Journal of Infectious Diseases | 2013

The Distribution of HIV DNA and RNA in Cell Subsets Differs in Gut and Blood of HIV-Positive Patients on ART: Implications for Viral Persistence

Steven A. Yukl; Amandeep K. Shergill; Terence Ho; Maudi Killian; Valerie Girling; Lorrie Epling; Peilin Li; Lisa K. Wong; Pierre Crouch; Steven G. Deeks; Diane V. Havlir; Kenneth R. McQuaid; Elizabeth Sinclair; Joseph K. Wong

Even with optimal antiretroviral therapy, human immunodeficiency virus (HIV) persists in plasma, blood cells, and tissues. To develop new therapies, it is essential to know what cell types harbor residual HIV. We measured levels of HIV DNA, RNA, and RNA/DNA ratios in sorted subsets of CD4+ T cells (CCR7+, transitional memory, and effector memory) and non-CD4+ T leukocytes from blood, ileum, and rectum of 8 ART-suppressed HIV-positive subjects. Levels of HIV DNA/million cells in CCR7+ and effector memory cells were higher in the ileum than blood. When normalized by cell frequencies, most HIV DNA and RNA in the blood were found in CCR7+ cells, whereas in both gut sites, most HIV DNA and RNA were found in effector memory cells. HIV DNA and RNA were observed in non-CD4+ T leukocytes at low levels, particularly in gut tissues. Compared to the blood, the ileum had higher levels of HIV DNA and RNA in both CD4+ T cells and non-CD4+ T leukocytes, whereas the rectum had higher HIV DNA levels in both cell types but lower RNA levels in CD4+ T cells. Future studies should determine whether different mechanisms allow HIV to persist in these distinct reservoirs, and the degree to which different therapies can affect each reservoir.


PLOS Pathogens | 2013

Prospective Antiretroviral Treatment of Asymptomatic, HIV-1 Infected Controllers

Hiroyu Hatano; Steven A. Yukl; April L. Ferre; Erin H. Graf; Ma Somsouk; Elizabeth Sinclair; Mohamed Abdel-Mohsen; Teri Liegler; Kara Harvill; Sarah Palmer; Peter Bacchetti; Peter W. Hunt; Jeffrey N. Martin; Joseph M. McCune; Russell P. Tracy; Michael P. Busch; Una O'Doherty; Barbara L. Shacklett; Joseph K. Wong; Steven G. Deeks

The study of HIV-infected “controllers” who are able to maintain low levels of plasma HIV RNA in the absence of antiretroviral therapy (ART) may provide insights for HIV cure and vaccine strategies. Despite maintaining very low levels of plasma viremia, controllers have elevated immune activation and accelerated atherosclerosis. However, the degree to which low-level replication contributes to these phenomena is not known. Sixteen asymptomatic controllers were prospectively treated with ART for 24 weeks. Controllers had a statistically significant decrease in ultrasensitive plasma and rectal HIV RNA levels with ART. Markers of T cell activation/dysfunction in blood and gut mucosa also decreased substantially with ART. Similar reductions were observed in the subset of “elite” controllers with pre-ART plasma HIV RNA levels below conventional assays (<40 copies/mL). These data confirm that HIV replication persists in controllers and contributes to a chronic inflammatory state. ART should be considered for these individuals (ClinicalTrials.gov NCT01025427).


PLOS ONE | 2014

CD4+ and CD8+ T cell activation are associated with HIV DNA in resting CD4+ T cells

Leslie R. Cockerham; Janet D. Siliciano; Elizabeth Sinclair; Una O'Doherty; Sarah Palmer; Steven A. Yukl; Matt C. Strain; Nicolas Chomont; Frederick Hecht; Robert F. Siliciano; Douglas D. Richman; Steven G. Deeks

The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.


Virology | 2009

Latently-infected CD4+ T cells are enriched for HIV-1 Tat variants with impaired transactivation activity.

Steven A. Yukl; Satish K. Pillai; Peilin Li; Karen Chang; William Pasutti; Chris Ahlgren; Diane V. Havlir; Matthew C. Strain; Huldrych F. Günthard; Douglas D. Richman; Andrew P. Rice; Eric S. Daar; Susan J. Little; Joseph K. Wong

The ability of HIV to establish latent infection in CD4+ lymphocytes represents a major barrier to the eradication of HIV. It is not clear what mechanisms favor latent over productive infection, but prior studies have suggested a role for the viral transcription factor Tat or its RNA target, TAR. Using samples from five individuals who were started on ART within 6 months of infection and achieved a viral load <50 (suppressed), we isolated one- and two-exon tat RNA from HIV propagated ex vivo from baseline plasma and from co-cultures of CD4+ T cells obtained at baseline and suppressed time points. Compared to virus from the baseline plasma (mostly from productively-infected CD4+ T cells), virus from the baseline and suppressed co-cultures (mostly from latently-infected cells) had more Tat variants with impaired transactivation activity. These findings suggest that impaired activity in the Tat-TAR axis may contribute to the establishment of latent infection in CD4+ T cells.


Nature Medicine | 2016

Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation

Peilin Li; Philipp Kaiser; Harry Lampiris; Peggy Kim; Steven A. Yukl; Diane V. Havlir; Warner C. Greene; Joseph K. Wong

The persistence of latent HIV proviruses in long-lived CD4+ T cells despite antiretroviral therapy (ART) is a major obstacle to viral eradication. Because current candidate latency-reversing agents (LRAs) induce HIV transcription, but fail to clear these cellular reservoirs, new approaches for killing these reactivated latent HIV reservoir cells are urgently needed. HIV latency depends upon the transcriptional quiescence of the integrated provirus and the circumvention of immune defense mechanisms. These defenses include cell-intrinsic innate responses that use pattern-recognition receptors (PRRs) to detect viral pathogens, and that subsequently induce apoptosis of the infected cell. Retinoic acid (RA)-inducible gene I (RIG-I, encoded by DDX58) forms one class of PRRs that mediates apoptosis and the elimination of infected cells after recognition of viral RNA. Here we show that acitretin, an RA derivative approved by the US Food and Drug Administration (FDA), enhances RIG-I signaling ex vivo, increases HIV transcription, and induces preferential apoptosis of HIV-infected cells. These effects are abrogated by DDX58 knockdown. Acitretin also decreases proviral DNA levels in CD4+ T cells from HIV-positive subjects on suppressive ART, an effect that is amplified when combined with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor. Pharmacological enhancement of an innate cellular-defense network could provide a means by which to eliminate reactivated cells in the latent HIV reservoir.

Collaboration


Dive into the Steven A. Yukl's collaboration.

Top Co-Authors

Avatar

Joseph K. Wong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peilin Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Lampiris

University of California

View shared research outputs
Top Co-Authors

Avatar

Hiroyu Hatano

University of California

View shared research outputs
Top Co-Authors

Avatar

Ma Somsouk

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter W. Hunt

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge