Steven B. Sutton
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven B. Sutton.
IEEE Journal of Quantum Electronics | 1997
Eric C. Honea; Raymond J. Beach; Steven B. Sutton; Joel A. Speth; Scott C. Mitchell; Jay A. Skidmore; Mark A. Emanuel; Stephen A. Payne
A compact diode-pumped Tm:YAG laser capable of generating greater than 100 W of CW power at 2 /spl mu/m has been demonstrated. A scalable diode end-pumping architecture is used in which 805-nm radiation, coupled to the wing of the Tm/sup 3+3/H/sub 6/-/sup 3/H/sub 4/ absorption feature, is delivered to the end of the laser rod via a lens duct. To facilitate thermal management, undoped YAG end caps are diffusion bonded to the central doped portion of the laser rod. For 2% and 4% Tm-doped rods of the same length, the lower doping level results in higher power, indicating that cross relaxation is still efficient while offering lower thermal stress and reduced absorption at the laser wavelength. Output powers for various output coupler reflectivities are compared to the predictions of a quasi-three-level model. Thermal lensing, cavity stability, and stress-induced birefringence measurements are described. The beam quality was analyzed with the 2% Tm-doped rod and a flat output coupler, yielding M/sup 2/ values of 14-23.
Optics Letters | 2000
Eric C. Honea; Raymond J. Beach; Scott C. Mitchell; Jay A. Skidmore; Mark A. Emanuel; Steven B. Sutton; Stephen A. Payne; Petras V. Avizonis; Robert S. Monroe; Dennis G. Harris
We describe a diode-pumped Yb:YAG laser that produces 1080 W of power cw with 27.5% optical optical efficiency and 532 W Q-switched with M2=2.2 and 17% optical–optical efficiency. The laser uses two composite Yb:YAG rods separated by a 90° quartz rotator for bifocusing compensation. A microlensed diode array end pumps each rod, using a hollow lens duct for pump delivery. By changing resonator parameters we can adjust the fundamental mode size and the output beam quality. Using a flattened Gaussian intensity profile to calculate the mode-fill efficiency and clipping losses, we compare experimental data with modeled output power versus beam quality.
IEEE Journal of Quantum Electronics | 1998
C. Bibeau; Raymond J. Beach; Scott C. Mitchell; Mark A. Emanuel; Jay A. Skidmore; Christopher A. Ebbers; Steven B. Sutton; Kenneth S. Jancaitis
Using a diode-end-pumped technology, a Yb:YAG laser capable of delivering up to 434 W of CW power has been demonstrated. The system incorporates a unique composite rod design which allows for high-average-power operation while simultaneously suppressing parasitic oscillations. Modeling and experimental data to support the quenching of parasitics are discussed. Beam quality measurements for CW operation with several cavity configurations are presented. In particular, beam quality measurements at 340-W CW yielded a beam quality factor of M/sup 2/=21. Predictions of a quasi-three-level model are compared with the experimental data for several output coupler reflectivities. An observed dependence of the cavity mode fill as a function of output coupler reflectivity is discussed. Employing a single acoustooptical switch, the system was Q-switched at 10 kHz and generated output powers up to 280 W with a measured beam quality of M/sup 2/=6.8 at 212 W, With an external dual-KTP crystal configuration, the Q-switched output was frequency converted to 515 nm and produced up to 76 W at 10 kHz in a 30-ns pulse length.
Optical Engineering | 2004
Richard A. Zacharias; Neil Reginald Beer; Erlan S. Bliss; Scott C. Burkhart; Simon J. Cohen; Steven B. Sutton; R. L. Van Atta; Scott Winters; Joseph T. Salmon; Milton R. Latta; Christopher J. Stolz; David C. Pigg; Timothy J. Arnold
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam Nd glass laser. Its 1.053-µm output is frequency converted to produce 1.8-MJ, 500-TW pulses in the ultraviolet. Refer to the companion overview articles in this issue for more information. High-energy-density and inertial confinement fusion physics experiments require the ability to precisely align and focus pulses with single-beam energy up to 20 KJ and durations of a few nanoseconds onto millimeter-sized targets. NIFs alignment control system now regularly provides automatic alignment of the four commissioned beams prior to every NIF shot in approximately 45 min, and speed improvements are being implemented. NIF utilizes adaptive optics for wavefront control, which significantly improves the ability to tightly focus each laser beam onto a target. Multiple sources of both static and dynamic aberration are corrected. This article provides an overview of the NIF automatic alignment and wavefront control systems, and provides data to show that the facility is expected to meet its primary requirements to position beams on the target with an accuracy of 50-µm rms over the 192 beams and to focus the pulses into a 600-µm spot.
Proceedings of SPIE | 2004
Bruno M. Van Wonterghem; Scott C. Burkhart; C. A. Haynam; Kenneth R. Manes; Christopher D. Marshall; James E. Murray; M. Spaeth; David Ralph Speck; Steven B. Sutton; Paul J. Wegner
The National Ignition Facility at LLNL recently commissioned the first set of four beam lines into the target chamber. This effort, called NIF Early Light, demonstrated the entire laser system architecture from master oscillator through the laser amplifiers and final optics to target and initial X-ray diagnostics. This paper describes the major installation and commissioning steps for one of NIFs 48 beam quads. Using a dedicated single beam line Precision Diagnostic System, performance was explored over the entire power versus energy space up to 6.4 TW/beam for sub-nanosecond pulses and 25 kJ/beam for 23 ns pulses at 1w. NEL also demonstrated frequency converted Nd:Glass laser energies from a single beamline of 11.3 kJ at 2w and 10.4 kJ at 3w.
High-power lasers and applications | 2000
Raymond J. Beach; Eric C. Honea; Steven B. Sutton; C. Bibeau; Jay A. Skidmore; Mark A. Emanuel; Stephen A. Payne; Petras V. Avizonis; R. S. Monroe; Dennis G. Harris
A scaleable diode end-pumping technology for high-average- power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M2 equals 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M2 value of 13.5 at an optical-to-optical conversion efficiency of 27.5%2. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M2 less than 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods.
Laser Diode Technology and Applications VI | 1994
Raymond J. Beach; Mark A. Emanuel; William J. Benett; Barry L. Freitas; Dino R. Ciarlo; Nils W. Carlson; Steven B. Sutton; Jay A. Skidmore; Richard W. Solarz
The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. A low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSLs). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSLs which are appropriate for material processing applications, low and intermediate average power DPSSLs are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.
Proceedings of SPIE | 1993
Brian J. Comaskey; George F. Albrecht; Raymond J. Beach; Stephan P. Velsko; Steven B. Sutton; Scott C. Mitchell; Charles S. Petty; Kenneth S. Jancaitis; William J. Benett; Barry L. Freitas; Richard W. Solarz
High average power Nd:YAG lasers are increasingly interesting for industrial applications such as drilling and machining. Diode pumping of this solid state medium offers longer services intervals, reduced thermal optical distortions, higher system efficiency and more compact packaging than lamp pumping. The zigzag slab geometry is well suited for applications where the average power exceeds a few hundred watts and a good beam quality is desired, particularly if the laser pumping level is to be varied. We present the status of our latest upgrade to our (originally 300 watt1) diode pumped slab laser. In what follows we first describe the diode pump source. We then discuss the zigzag slab laser design and its present performance.
Proceedings of SPIE | 2004
Richard A. Zacharias; Neil Reginald Beer; Erlan S. Bliss; Scott C. Burkhart; Simon J. Cohen; Steven B. Sutton; R. Lewis Van Atta; Scott Winters; Joseph T. Salmon; Christopher J. Stolz; David C. Pigg; Timothy J. Arnold
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system. High-energy-density and inertial confinement fusion physics experiments require the ability to precisely align and focus pulses with single beam energy up to 20KJ in a few nanoseconds onto mm-sized targets. NIFs alignment control system now regularly provides automatic alignment of the four commissioned beams prior to every NIF shot in approximately 45min., and speed improvements are being implemented. NIF utilizes adaptive optics for wavefront control, which significantly improves the ability to tightly focus each laser beam onto a target. Multiple sources of both static and dynamic aberration are corrected. This presentation provides an overview of the NIF Automatic Alignment and Wavefront Control Systems including the accuracy and target spot size performance achieved.
High-power lasers and applications | 1998
Charles D. Orth; Raymond J. Beach; C. Bibeau; Eric C. Honea; Kenneth S. Jancaitis; Janice K. Lawson; Christopher D. Marshall; Richard A. Sacks; Kathleen I. Schaffers; Jay A. Skidmore; Steven B. Sutton
We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb3+-doped Sr5(PO4)3F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of approximately 10%. Our modeling indicates that the laser will be able to meet its performance goals.