Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Bellon is active.

Publication


Featured researches published by Steven Bellon.


Journal of Biological Chemistry | 2008

c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations.

Steven Bellon; Paula Kaplan-Lefko; Yajing Yang; Yihong Zhang; Jodi Moriguchi; Karen Rex; Carol W. Johnson; Paul Rose; Alexander M. Long; Anne O'connor; Yan Gu; Angela Coxon; Tae-Seong Kim; Andrew Tasker; Teresa L. Burgess; Isabelle Dussault

c-Met is a receptor tyrosine kinase often deregulated in human cancers, thus making it an attractive drug target. One mechanism by which c-Met deregulation leads to cancer is through gain-of-function mutations. Therefore, small molecules capable of targeting these mutations could offer therapeutic benefits for affected patients. SU11274 was recently described and reported to inhibit the activity of the wild-type and some mutant forms of c-Met, whereas other mutants are resistant to inhibition. We identified a novel series of c-Met small molecule inhibitors that are active against multiple mutants previously identified in hereditary papillary renal cell carcinoma patients. AM7 is active against wild-type c-Met as well as several mutants, inhibits c-Met-mediated signaling in MKN-45 and U-87 MG cells, and inhibits tumor growth in these two models grown as xenografts. The crystal structures of AM7 and SU11274 bound to unphosphorylated c-Met have been determined. The AM7 structure reveals a novel binding mode compared with other published c-Met inhibitors and SU11274. The molecule binds the kinase linker and then extends into a new hydrophobic binding site. This binding site is created by a significant movement of the C-helix and so represents an inactive conformation of the c-Met kinase. Thus, our results demonstrate that it is possible to identify and design inhibitors that will likely be active against mutants found in different cancers.


Journal of Medicinal Chemistry | 2008

Discovery and Optimization of Triazolopyridazines as Potent and Selective Inhibitors of the c-Met Kinase.

Brian K. Albrecht; Jean-Christophe Harmange; David Bauer; Loren Berry; Christiane Bode; Alessandro Boezio; April Chen; Deborah Choquette; Isabelle Dussault; Cary Fridrich; Satoko Hirai; Doug Hoffman; Jay Larrow; Paula Kaplan-Lefko; Jasmine Lin; Julia Lohman; Alexander M. Long; Jodi Moriguchi; Anne O'connor; Michele Potashman; Monica Reese; Karen Rex; Aaron C. Siegmund; Kavita Shah; Roman Shimanovich; Stephanie K. Springer; Yohannes Teffera; Yajing Yang; Yihong Zhang; Steven Bellon

Tumorigenesis is a multistep process in which oncogenes play a key role in tumor formation, growth, and maintenance. MET was discovered as an oncogene that is activated by its ligand, hepatocyte growth factor. Deregulated signaling in the c-Met pathway has been observed in multiple tumor types. Herein we report the discovery of potent and selective triazolopyridazine small molecules that inhibit c-Met activity.


Journal of Medicinal Chemistry | 2008

Design, synthesis, and biological evaluation of potent c-Met inhibitors.

Noel D'angelo; Steven Bellon; Shon Booker; Yuan Cheng; Angela Coxon; Celia Dominguez; Ingrid M. Fellows; Douglas Hoffman; Randall W. Hungate; Paula Kaplan-Lefko; Matthew R. Lee; Chun Li; Longbin Liu; Elizabeth Rainbeau; Paul J. Reider; Karen Rex; Aaron C. Siegmund; Yaxiong Sun; Andrew Tasker; Ning Xi; Shimin Xu; Yajing Yang; Yihong Zhang; Teresa L. Burgess; Isabelle Dussault; Tae-Seong Kim

c-Met is a receptor tyrosine kinase that plays a key role in several cellular processes but has also been found to be overexpressed and mutated in different human cancers. Consequently, targeting this enzyme has become an area of intense research in drug discovery. Our studies began with the design and synthesis of novel pyrimidone 7, which was found to be a potent c-Met inhibitor. Subsequent SAR studies identified 22 as a more potent analog, whereas an X-ray crystal structure of 7 bound to c-Met revealed an unexpected binding conformation. This latter finding led to the development of a new series that featured compounds that were more potent both in vitro and in vivo than 22 and also exhibited different binding conformations to c-Met. Novel c-Met inhibitors have been designed, developed, and found to be potent in vitro and in vivo.


Journal of Medicinal Chemistry | 2008

Discovery of a Potent, Selective, and Orally Bioavailable c-Met Inhibitor: 1-(2-Hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458)

Longbin Liu; Aaron C. Siegmund; Ning Xi; Paula Kaplan-Lefko; Karen Rex; April Chen; Jasmine Lin; Jodi Moriguchi; Loren Berry; Liyue Huang; Yohannes Teffera; Yajing Yang; Yihong Zhang; Steven Bellon; Matthew R. Lee; Roman Shimanovich; Annette Bak; Celia Dominguez; Mark H. Norman; Jean-Christophe Harmange; Isabelle Dussault; Tae-Seong Kim

Deregulation of the receptor tyrosine kinase c-Met has been implicated in human cancers. Pyrazolones with N-1 bearing a pendent hydroxyalkyl side chain showed selective inhibition of c-Met over VEGFR2. However, studies revealed the generation of active, nonselective metabolites. Blocking this metabolic hot spot led to the discovery of 17 (AMG 458). When dosed orally, 17 significantly inhibited tumor growth in the NIH3T3/TPR-Met and U-87 MG xenograft models with no adverse effect on body weight.


Journal of Medicinal Chemistry | 2012

Structure-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives.

Mark H. Norman; Longbin Liu; Matthew R. Lee; Ning Xi; Ingrid M. Fellows; Noel D'angelo; Celia Dominguez; Karen Rex; Steven Bellon; T.S Kim; Isabelle Dussault

Deregulation of c-Met receptor tyrosine kinase activity leads to tumorigenesis and metastasis in animal models. More importantly, the identification of activating mutations in c-Met, as well as MET gene amplification in human cancers, points to c-Met as an important target for cancer therapy. We have previously described two classes of c-Met kinase inhibitors (class I and class II) that differ in their binding modes and selectivity profiles. The class II inhibitors tend to have activities on multiple kinases. Knowledge of the binding mode of these molecules in the c-Met protein led to the design and evaluation of several new class II c-Met inhibitors that utilize various 5-membered cyclic carboxamides to conformationally restrain key pharmacophoric groups within the molecule. These investigations resulted in the identification of a potent and novel class of pyrazolone c-Met inhibitors with good in vivo activity.


Anti-cancer Agents in Medicinal Chemistry | 2009

From Concept to Reality: The Long Road to c-Met and RON Receptor Tyrosine Kinase Inhibitors for the Treatment of Cancer

Isabelle Dussault; Steven Bellon

c-Met and RON are receptor tyrosine kinases (RTK) that are closely related, both from a homology as well as from a functional stand point. Both receptors can induce cell migration, invasion, proliferation and survival in response to their respective ligand. Moreover, both possess oncogenic activity in vitro, in animal models in vivo and are often deregulated in human cancers. c-Met attracted a lot of interest shortly after its discovery in the mid-1980s because of its unusual role in cell motility. Moreover, a causal role for c-Met activating mutations in human cancer propelled an intensive drug discovery effort throughout the research and pharmaceutical communities to find inhibitors of c-Met. While c-Met is now a well-accepted target for an anti-cancer drug, less is known about the role of RON in cancer. Interestingly, despite their many common attributes, c-Met and RON are activated by different mechanisms in cancer cells. Because of the homology between the two RTKs, some small molecule kinase inhibitors of c-Met have inhibitory activity on RON, opening the door to exploring the role of both receptors in human cancers. In this review we will discuss the relevance of both c-Met and RON deregulation in human cancers and the progress so far in identifying small molecule kinase inhibitors that can block the activity of these targets in vitro and lead to anti-tumor effects in animal models.


Journal of Medicinal Chemistry | 2012

Structure-Based Design of Novel Class II c-Met Inhibitors: 2. SAR and Kinase Selectivity Profiles of the Pyrazolone Series

Longbin Liu; Mark H. Norman; Matthew R. Lee; Ning Xi; Aaron C. Siegmund; Alessandro Boezio; Shon Booker; Debbie Choquette; Noel D. D’Angelo; Julie Germain; Kevin Yang; Yajing Yang; Yihong Zhang; Steven Bellon; Douglas A. Whittington; Jean-Christophe Harmange; Celia Dominguez; Tae-Seong Kim; Isabelle Dussault

As part of our effort toward developing an effective therapeutic agent for c-Met-dependent tumors, a pyrazolone-based class II c-Met inhibitor, N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (1), was identified. Knowledge of the binding mode of this molecule in both c-Met and VEGFR-2 proteins led to a novel strategy for designing more selective analogues of 1. Along with detailed SAR information, we demonstrate that the low kinase selectivity associated with class II c-Met inhibitors can be improved significantly. This work resulted in the discovery of potent c-Met inhibitors with improved selectivity profiles over VEGFR-2 and IGF-1R that could serve as useful tools to probe the relationship between kinase selectivity and in vivo efficacy in tumor xenograft models. Compound 59e (AMG 458) was ultimately advanced into preclinical safety studies.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery and optimization of potent and selective triazolopyridazine series of c-Met inhibitors

Christiane Bode; Alessandro Boezio; Brian K. Albrecht; Steven Bellon; Loren Berry; Martin A. Broome; Deborah Choquette; Isabelle Dussault; Richard T. Lewis; Min-Hwa Jasmine Lin; Karen Rex; Douglas A. Whittington; Yajing Yang; Jean-Christophe Harmange

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. We previously showed that O-linked triazolopyridazines can be potent inhibitors of c-Met. Herein, we report the discovery of a related series of N-linked triazolopyridazines which demonstrate nanomolar inhibition of c-Met kinase activity and display improved pharmacodynamic profiles. Specifically, the potent time-dependent inhibition of cytochrome P450 associated with the O-linked triazolopyridazines has been eliminated within this novel series of inhibitors. N-linked triazolopyridazine 24 exhibited favorable pharmacokinetics and displayed potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver PD model. Once-daily oral administration of 24 for 22days showed significant tumor growth inhibition in an NIH-3T3/TPR-Met xenograft mouse efficacy model.


Proceedings of the National Academy of Sciences of the United States of America | 2016

S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3.

Hariharan Jayaram; Dominik Hoelper; Siddhant U. Jain; Nico Cantone; Stefan M. Lundgren; Florence Poy; C. David Allis; Richard D. Cummings; Steven Bellon; Peter W. Lewis

Significance Recent exome sequencing studies have uncovered high-frequency histone H3 driver mutations in pediatric cancers. Previous studies have shown that lysine to methionine histone mutations are potent inhibitors of their respective lysine methyltransferases. However, an in-depth understanding of this inhibition was limited by the lack of structural and kinetic information. This study investigates the biochemical and biophysical parameters of lysine to methionine histone mutants using the methyltransferase G9a and H3K9M as a model system. Structural and functional experiments conclude that the methyltransferase cofactor S-adenosyl methionine is required for binding of G9a to the mutant histone. Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.


Journal of Medicinal Chemistry | 2015

Discovery of 1H-Pyrazol-3(2H)-ones as Potent and Selective Inhibitors of Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK).

Adrian L. Smith; Kristin L. Andrews; Holger Beckmann; Steven Bellon; Pedro J. Beltran; Shon Booker; Hao Chen; Young-Ah Chung; Noel D. D’Angelo; Jennifer Dao; Kenneth R. Dellamaggiore; Peter Jaeckel; Richard Kendall; Katja Labitzke; Alexander M. Long; Silvia Materna-Reichelt; Petia Mitchell; Mark H. Norman; David Powers; Mark Rose; Paul Shaffer; Michelle M. Wu; J. Russell Lipford

The structure-based design and optimization of a novel series of selective PERK inhibitors are described resulting in the identification of 44 as a potent, highly selective, and orally active tool compound suitable for PERK pathway biology exploration both in vitro and in vivo.

Researchain Logo
Decentralizing Knowledge