Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven D. Bennett is active.

Publication


Featured researches published by Steven D. Bennett.


Science | 2012

Room-Temperature Quantum Bit Memory Exceeding One Second

Peter Maurer; Georg Kucsko; Christian Latta; Liang Jiang; Norman Yao; Steven D. Bennett; Fernando Pastawski; David Hunger; Nicholas Chisholm; Matthew Markham; Daniel Twitchen; J. I. Cirac; Mikhail D. Lukin

Extending Quantum Memory Practical applications in quantum communication and quantum computation require the building blocks—quantum bits and quantum memory—to be sufficiently robust and long-lived to allow for manipulation and storage (see the Perspective by Boehme and McCarney). Steger et al. (p. 1280) demonstrate that the nuclear spins of 31P impurities in an almost isotopically pure sample of 28Si can have a coherence time of as long as 192 seconds at a temperature of ∼1.7 K. In diamond at room temperature, Maurer et al. (p. 1283) show that a spin-based qubit system comprised of an isotopic impurity (13C) in the vicinity of a color defect (a nitrogen-vacancy center) could be manipulated to have a coherence time exceeding one second. Such lifetimes promise to make spin-based architectures feasible building blocks for quantum information science. Defects in diamond can be operated as quantum memories at room temperature. Stable quantum bits, capable both of storing quantum information for macroscopic time scales and of integration inside small portable devices, are an essential building block for an array of potential applications. We demonstrate high-fidelity control of a solid-state qubit, which preserves its polarization for several minutes and features coherence lifetimes exceeding 1 second at room temperature. The qubit consists of a single 13C nuclear spin in the vicinity of a nitrogen-vacancy color center within an isotopically purified diamond crystal. The long qubit memory time was achieved via a technique involving dissipative decoupling of the single nuclear spin from its local environment. The versatility, robustness, and potential scalability of this system may allow for new applications in quantum information science.


Science | 2012

Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit

Shimon Kolkowitz; Ania C. Bleszynski Jayich; Quirin Unterreithmeier; Steven D. Bennett; Peter Rabl; J. G. E. Harris; Mikhail D. Lukin

The spin of a nitrogen vacancy defect in diamond is used to sense the motion a magnetized microresonator. Mechanical systems can be influenced by a wide variety of small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We demonstrate that the coherent evolution of a single electronic spin associated with a nitrogen vacancy center in diamond can be coupled to the motion of a magnetized mechanical resonator. Coherent manipulation of the spin is used to sense driven and Brownian motion of the resonator under ambient conditions with a precision below 6 picometers. With future improvements, this technique could be used to detect mechanical zero-point fluctuations, realize strong spin-phonon coupling at a single quantum level, and implement quantum spin transducers. Quantum Mechanical Coupling Observing the induced patterns of iron filings as a magnet is moved nearby, is a mainstay experiment of elementary science kits. Scaling down to the motion of the magnet and the size of the “sensing” particles enters the realm of quantum nanomechanics, where the motion of the vibrating system is quantized. That motion, however, is difficult to observe and manipulate. Kolkowitz et al. (p. 1636, published online 23 February; see the Perspective by Treutlein) coupled the single-mode vibration of a magnetized nanomechanical resonator to the quantum mechanical two-level spin system associated with the nitrogen vacancy center in diamond. The evolution of the spin degree of freedom was directly mapped to the mechanical motion, providing the opportunity to probe minute mechanical motion that would otherwise be undetectable.


Physical Review Letters | 2012

Optomechanical Quantum Information Processing with Photons and Phonons

Kai Stannigel; Peter Komar; S. J. M. Habraken; Steven D. Bennett; Mikhail D. Lukin; P. Zoller; Peter Rabl

We describe how strong resonant interactions in multimode optomechanical systems can be used to induce controlled nonlinear couplings between single photons and phonons. Combined with linear mapping schemes between photons and phonons, these techniques provide a universal building block for various classical and quantum information processing applications. Our approach is especially suited for nano-optomechanical devices, where strong optomechanical interactions on a single photon level are within experimental reach.


Physical Review Letters | 2013

Phonon-Induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing

Steven D. Bennett; Norman Yao; Johannes Otterbach; P. Zoller; Peter Rabl; Mikhail D. Lukin

We propose and analyze a novel mechanism for long-range spin-spin interactions in diamond nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers in diamond, are mediated by their coupling via strain to the vibrational mode of a diamond mechanical nanoresonator. This coupling results in phonon-mediated effective spin-spin interactions that can be used to generate squeezed states of a spin ensemble. We show that spin dephasing and relaxation can be largely suppressed, allowing for substantial spin squeezing under realistic experimental conditions. Our approach has implications for spin-ensemble magnetometry, as well as phonon-mediated quantum information processing with spin qubits.


Physical Review Letters | 2010

Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot.

Steven D. Bennett; Lynda Cockins; Yoichi Miyahara; Peter Grutter; Aashish A. Clerk

We present theoretical and experimental results on the mechanical damping of an atomic force microscope cantilever strongly coupled to a self-assembled InAs quantum dot. When the cantilever oscillation amplitude is large, its motion dominates the charge dynamics of the dot which in turn leads to nonlinear, amplitude-dependent damping of the cantilever. We observe highly asymmetric lineshapes of Coulomb blockade peaks in the damping that reflect the degeneracy of energy levels on the dot, in excellent agreement with our strong coupling theory. Furthermore, we predict that excited state spectroscopy is possible by studying the damping versus oscillation amplitude, in analogy to varying the amplitude of an ac gate voltage.


Physical Review Letters | 2012

Topological Flat Bands from Dipolar Spin Systems

Norman Yao; Chris Laumann; Alexey V. Gorshkov; Steven D. Bennett; Eugene Demler; P. Zoller; Mikhail D. Lukin

We propose and analyze a physical system that naturally admits two-dimensional topological nearly flat bands. Our approach utilizes an array of three-level dipoles (effective S=1 spins) driven by inhomogeneous electromagnetic fields. The dipolar interactions produce arbitrary uniform background gauge fields for an effective collection of conserved hard-core bosons, namely, the dressed spin flips. These gauge fields result in topological band structures, whose band gap can be larger than the corresponding bandwidth. Exact diagonalization of the full interacting Hamiltonian at half-filling reveals the existence of superfluid, crystalline, and supersolid phases. An experimental realization using either ultracold polar molecules or spins in the solid state is considered.


New Journal of Physics | 2005

Quantum nanoelectromechanics with electrons, quasi-particles and Cooper pairs: effective bath descriptions and strong feedback effects

Aashish A. Clerk; Steven D. Bennett

Using a quantum-noise approach, we discuss the physics of both normal metal and superconducting single-electron transistors (SSETs) coupled to mechanical resonators. Particular attention is paid to the regime where transport occurs via incoherent Cooper-pair tunnelling (either via the Josephson quasi-particle (JQP) or double JQP (DJQP) process). We show that, surprisingly, the back-action of tunnelling Cooper pairs (or superconducting quasi-particles) can be used to significantly cool the oscillator. We also discuss the physical origin of negative-damping effects in this system and how they can lead to a regime of strong electromechanical feedback, where despite a weak SET–oscillator coupling, the motion of the oscillator strongly effects the tunnelling of the Cooper pairs. We show that in this regime, the oscillator is characterized by an energy-dependent effective temperature. Finally, we discuss the strong analogy between back-action effects of incoherent Cooper-pair tunnelling and ponderomotive effects in an optical cavity with a moveable mirror; in our case, tunnelling Cooper pairs play the role of the cavity photons.


Nano Letters | 2014

All-Optical Sensing of a Single-Molecule Electron Spin

Alexander Sushkov; Nicholas Chisholm; Igor Lovchinsky; Minako Kubo; Peggy Lo; Steven D. Bennett; David Hunger; A. V. Akimov; Ronald L. Walsworth; Hye Jin Park; Mikhail D. Lukin

We demonstrate an all-optical method for magnetic sensing of individual molecules in ambient conditions at room temperature. Our approach is based on shallow nitrogen-vacancy (NV) centers near the surface of a diamond crystal, which we use to detect single paramagnetic molecules covalently attached to the diamond surface. The manipulation and readout of the NV centers is all-optical and provides a sensitive probe of the magnetic field fluctuations stemming from the dynamics of the electronic spins of the attached molecules. As a specific example, we demonstrate detection of a single paramagnetic molecule containing a gadolinium (Gd(3+)) ion. We confirm single-molecule resolution using optical fluorescence and atomic force microscopy to colocalize one NV center and one Gd(3+)-containing molecule. Possible applications include nanoscale and in vivo magnetic spectroscopy and imaging of individual molecules.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy

Lynda Cockins; Yoichi Miyahara; Steven D. Bennett; Aashish A. Clerk; S. A. Studenikin; Philip S. Poole; A. S. Sachrajda; Peter Grutter

Strong confinement of charges in few-electron systems such as in atoms, molecules, and quantum dots leads to a spectrum of discrete energy levels often shared by several degenerate states. Because the electronic structure is key to understanding their chemical properties, methods that probe these energy levels in situ are important. We show how electrostatic force detection using atomic force microscopy reveals the electronic structure of individual and coupled self-assembled quantum dots. An electron addition spectrum results from a change in cantilever resonance frequency and dissipation when an electron tunnels on/off a dot. The spectra show clear level degeneracies in isolated quantum dots, supported by the quantitative measurement of predicted temperature-dependent shifts of Coulomb blockade peaks. Scanning the surface shows that several quantum dots may reside on what topographically appears to be just one. Relative coupling strengths can be estimated from these images of grouped coupled dots.


Physical Review Letters | 2015

Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers.

Michael Goldman; Alp Sipahigil; Marcus W. Doherty; Norman Yao; Steven D. Bennett; Matthew Markham; Daniel Twitchen; Neil B. Manson; Alexander Kubanek; Mikhail D. Lukin

We report direct measurement of population dynamics in the excited state manifold of a nitrogen-vacancy (NV) center in diamond. We quantify the phonon-induced mixing rate and demonstrate that it can be completely suppressed at low temperatures. Further, we measure the intersystem crossing (ISC) rate for different excited states and develop a theoretical model that unifies the phonon-induced mixing and ISC mechanisms. We find that our model is in excellent agreement with experiment and that it can be used to predict unknown elements of the NV centers electronic structure. We discuss the models implications for enhancing the NV centers performance as a room-temperature sensor.

Collaboration


Dive into the Steven D. Bennett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Rabl

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge