Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Do is active.

Publication


Featured researches published by Steven Do.


Journal of Medicinal Chemistry | 2013

Discovery of 2-{3-[2-(1-Isopropyl-3-methyl-1H-1,2–4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): A β-Sparing Phosphoinositide 3-Kinase Inhibitor with High Unbound Exposure and Robust in Vivo Antitumor Activity

Chudi Ndubaku; Timothy P. Heffron; Steven Staben; Matthew Baumgardner; Nicole Blaquiere; Erin K. Bradley; Richard James Bull; Steven Do; Jennafer Dotson; Danette Dudley; Kyle A. Edgar; Lori Friedman; Richard Goldsmith; Robert Heald; Aleksandr Kolesnikov; Leslie Lee; Cristina Lewis; Michelle Nannini; Jim Nonomiya; Jodie Pang; Steve Price; Wei Wei Prior; Laurent Salphati; Steve Sideris; Jeffery J. Wallin; Lan Wang; Binqing Wei; Deepak Sampath; Alan G. Olivero

Dysfunctional signaling through the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway leads to uncontrolled tumor proliferation. In the course of the discovery of novel benzoxepin PI3K inhibitors, we observed a strong dependency of in vivo antitumor activity on the free-drug exposure. By lowering the intrinsic clearance, we derived a set of imidazobenzoxazepin compounds that showed improved unbound drug exposure and effectively suppressed growth of tumors in a mouse xenograft model at low drug dose levels. One of these compounds, GDC-0032 (11l), was progressed to clinical trials and is currently under phase I evaluation as a potential treatment for human malignancies.


Journal of Medicinal Chemistry | 2011

Rational Design of Phosphoinositide 3-Kinase α Inhibitors That Exhibit Selectivity over the Phosphoinositide 3-Kinase β Isoform

Timothy P. Heffron; Binqing Wei; Alan G. Olivero; Steven Staben; Vickie Tsui; Steven Do; Jennafer Dotson; Adrian Folkes; Paul Goldsmith; Richard Goldsmith; Janet Gunzner; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Stephen J. Shuttleworth; Daniel P. Sutherlin; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Bing-Yan Zhu

Of the four class I phosphoinositide 3-kinase (PI3K) isoforms, PI3Kα has justly received the most attention for its potential in cancer therapy. Herein we report our successful approaches to achieve PI3Kα vs PI3Kβ selectivity for two chemical series. In the thienopyrimidine series of inhibitors, we propose that select ligands achieve selectivity derived from a hydrogen bonding interaction with Arg770 of PI3Kα that is not attained with the corresponding Lys777 of PI3Kβ. In the benzoxepin series of inhibitors, the selectivity observed can be rationalized by the difference in electrostatic potential between the two isoforms in a given region rather than any specific interaction.


Journal of Medicinal Chemistry | 2016

The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326)

Timothy P. Heffron; Robert Heald; Chudi Ndubaku; Binqing Wei; Martin Augistin; Steven Do; Kyle A. Edgar; Charles Eigenbrot; Lori Friedman; Emanuela Gancia; Philip Stephen Jackson; G. Jones; Aleksander Kolesnikov; Leslie Lee; John D. Lesnick; Cristina Lewis; Neville McLean; Mario Mörtl; Jim Nonomiya; Jodie Pang; Steve Price; Wei Wei Prior; Laurent Salphati; Steve Sideris; Steven Staben; Stefan Steinbacher; Vickie Tsui; Jeffrey Wallin; Deepak Sampath; Alan G. Olivero

Inhibitors of the class I phosphoinositide 3-kinase (PI3K) isoform PI3Kα have received substantial attention for their potential use in cancer therapy. Despite the particular attraction of targeting PI3Kα, achieving selectivity for the inhibition of this isoform has proved challenging. Herein we report the discovery of inhibitors of PI3Kα that have selectivity over the other class I isoforms and all other kinases tested. In GDC-0032 (3, taselisib), we previously minimized inhibition of PI3Kβ relative to the other class I insoforms. Subsequently, we extended our efforts to identify PI3Kα-specific inhibitors using PI3Kα crystal structures to inform the design of benzoxazepin inhibitors with selectivity for PI3Kα through interactions with a nonconserved residue. Several molecules selective for PI3Kα relative to the other class I isoforms, as well as other kinases, were identified. Optimization of properties related to drug metabolism then culminated in the identification of the clinical candidate GDC-0326 (4).


Bioorganic & Medicinal Chemistry Letters | 2011

Structure-based design of thienobenzoxepin inhibitors of PI3-kinase

Steven Staben; Michael Siu; Richard Goldsmith; Alan G. Olivero; Steven Do; Daniel J. Burdick; Timothy P. Heffron; Jenna Dotson; Daniel P. Sutherlin; Bing-Yan Zhu; Vickie Tsui; Hoa Le; Leslie Lee; John Lesnick; Cristina Lewis; Jeremy Murray; Jim Nonomiya; Jodie Pang; Wei Wei Prior; Laurent Salphati; Lionel Rouge; Deepak Sampath; Steve Sideris; Christian Wiesmann; Ping Wu

Starting from thienobenzopyran HTS hit 1, co-crystallization, molecular modeling and metabolic analysis were used to design potent and metabolically stable inhibitors of PI3-kinase. Compound 15 demonstrated PI3K pathway suppression in a mouse MCF7 xenograft model.


Bioorganic & Medicinal Chemistry Letters | 2008

Aryl–indolyl maleimides as inhibitors of CaMKIIδ. Part 3: Importance of the indole orientation

Qing Lu; Zheng Chen; John J. Perumattam; Dan-Xiong Wang; Weiling Liang; Yong-jin Xu; Steven Do; Llorente V.R. Boñaga; Jeffrey N. Higaki; Hanmin Dong; Albert Liclican; Steve Sideris; Maureen Laney; Sundeep Dugar; Babu J. Mavunkel; Daniel E. Levy

A family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin dependant kinase. Inhibitory activities against the enzyme ranged from 10nM to >20microM and were dependant upon both the nature of the aryl group and the tether joining the basic amine to the indolyl maleimide core of the inhibitors. Key interactions with the kinase ATP site and hinge region, predicted by homology modeling, were confirmed.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors.

Huiyong Hu; Xiaojing Wang; G.K Chan; Jae H. Chang; Steven Do; Jason Drummond; Allen Ebens; Wendy Lee; Justin Ly; J.P Lyssikatos; Jeremy Murray; John Moffat; Q Chao; Tsui; Heidi J.A. Wallweber; Aleksandr Kolesnikov

Pim kinase inhibitors are promising cancer therapeutics. Pim-2, among the three Pim isoforms, plays a critical role in multiple myeloma yet inhibition of Pim-2 is challenging due to its high affinity for ATP. A co-crystal structure of a screening hit 1 bound to Pim-1 kinase revealed the key binding interactions of its indazole core within the ATP binding site. Screening of analogous core fragments afforded 1H-pyrazolo[3,4-c]pyridine (6-azaindazole) as a core for the development of pan-Pim inhibitors. Fragment and structure based drug design led to identification of the series with picomolar biochemical potency against all three Pim isoforms. Desirable cellular potency was also achieved.


Bioorganic & Medicinal Chemistry Letters | 2016

α-Aryl pyrrolidine sulfonamides as TRPA1 antagonists

Vishal Verma; Daniel Shore; Huifen Chen; Jun Chen; Steven Do; David H. Hackos; Aleks Kolesnikov; Joseph P. Lyssikatos; Suzanne Tay; Lan Wang; Anthony A. Estrada

A series of α-aryl pyrrolidine sulfonamide TRPA1 antagonists were advanced from an HTS hit to compounds that were stable in liver microsomes with retention of TRPA1 potency. Metabolite identification studies and physicochemical properties were utilized as a strategy for compound design. These compounds serve as starting points for further compound optimization.


Cancer Research | 2013

Abstract DDT02-01: Discovery of GDC-0032: A beta-sparing PI3K inhibitor active against PIK3CA mutant tumors.

Alan G. Olivero; Timothy P. Heffron; Matthew Baumgardner; Marcia Belvin; Leanne Ross; Nicole Blaquiere; Erin K. Bradley; Georgette Castanedo; Mika K. Derynck; Steven Do; Jennafer Dotson; Danette Dudley; Kyle A. Edgar; Adrian Folkes; Ross Francis; Tony Gianetti; Richard Goldsmith; Paul Goldsmith; Jane Guan; Trevor Keith Harrison; Robert Heald; Jerry Hsu; Phillip Jackson; G. Jones; Amy Kim; Aleks Kolesnikov; Mark R. Lackner; Leslie Lee; John Lesnick; Cristina Lewis

Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC Modifications of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway are frequent in cancer due to multiple mechanisms, including activating mutations of the alpha isoform of PI3K. The dysregulation of this pathway has been implicated in many processes involved in oncogenesis. Thus, PI3K is a promising therapeutic target for cancer. Previously we have disclosed GDC-0941, a class 1 selective PI3K inhibitor and our class 1 PI3K/mTOR kinase inhibitor, GDC-0980. In this presentation we describe the design and discovery of a new class of PI3K inhibitors, which selectively inhibit the activated PI3Kα isoform relative to the PI3Kβ isoform. A lead was identified from a high throughput screen (HTS) that resulted in a novel chemical series of kinase inhibitors. Through a structure-based approach, this lead was optimized to provide very potent inhibitors of PI3K. In addition, this chemical series allowed for designing molecules that have different selectivity patterns with respect to the class 1 PI3K isoforms. In particular, a series of inhibitors were designed that could preferentially inhibit PI3Kα relative to PI3Kβ (“beta-sparing”). Further modification of the physicochemical properties led to the discovery of GDC-0032. GDC-0032 is a potent inhibitor of PI3Kα (PIK3CA) isoform with a Ki =0.2 nM, and with reduced inhibitory activity against PI3Kβ. This selectivity profile allowed for greater efficacy in vivo at the maximum tolerated dose relative to a pan inhibitor in representative PI3Kα (PIK3CA) mutant xenografts. It is notable that GDC-0032 preferentially inhibited PI3Kα (PIK3CA) mutant cells relative to cells with wild-type PI3K. Taken together, GDC-0032 is a potent and effective beta-sparing PI3K inhibitor, which currently is in clinical trials. Citation Format: Alan G. Olivero, Timothy P. Heffron, Matthew Baumgardner, Marcia Belvin, Leanne Berry Ross, Nicole Blaquiere, Erin Bradley, Georgette Castanedo, Mika Derynck, Steven Do, Jennafer Dotson, Danette Dudley, Kyle Edgar, Adrian Folkes, Ross Francis, Tony Gianetti, Richard Goldsmith, Paul Goldsmith, Jane Guan, Trevor Harrison, Robert Heald, Jerry Hsu, Phillip Jackson, Graham Jones, Amy Kim, Aleks Kolesnikov, Mark Lackner, Leslie Lee, John Lesnick, Cristina Lewis, Michael Mamounas, Neville McLean, Jeremy Murray, Chudi Ndubaku, Jim Nonomiya, Jodie Pang, Neil Pegg, Wei Wei Prior, Laurent Salphati, Deepack Sampath, Stephen Sideris, Michael Siu, Steven Staben, Daniel Sutherlin, Mark Ultsch, Jeff Wallin, Lan Wang, Christian Wiesmann, Xiaolin Zhang, Lori S. Friedman. Discovery of GDC-0032: A beta-sparing PI3K inhibitor active against PIK3CA mutant tumors. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr DDT02-01. doi:10.1158/1538-7445.AM2013-DDT02-01


Journal of Medicinal Chemistry | 2017

Discovery of 5-Azaindazole (GNE-955) as a Potent Pan-Pim Inhibitor with Optimized Bioavailability

Xiaojing Wang; Aleksandr Kolesnikov; Suzanne Tay; Grace Chan; Qi Chao; Steven Do; Jason Drummond; Allen Ebens; Ning Liu; Justin Ly; Eric Harstad; Huiyong Hu; John Moffat; Veerendra Munugalavadla; Jeremy Murray; Dionysos Slaga; Vickie Tsui; Matthew Volgraf; Heidi J.A. Wallweber; Jae H. Chang

Pim kinases have been identified as promising therapeutic targets for hematologic-oncology indications, including multiple myeloma and certain leukemia. Here, we describe our continued efforts in optimizing a lead series by improving bioavailability while maintaining high inhibitory potency against all three Pim kinase isoforms. The discovery of extensive intestinal metabolism and major metabolites helped refine our design strategy, and we observed that optimizing the pharmacokinetic properties first and potency second was a more successful approach than the reverse. In the resulting work, novel analogs such as 20 (GNE-955) were discovered bearing 5-azaindazole core with noncanonical hydrogen bonding to the hinge.


Journal of Medicinal Chemistry | 2018

Discovery of a Potent (4R,5S)-4-Fluoro-5-methylproline Sulfonamide Transient Receptor Potential Ankyrin 1 Antagonist and Its Methylene Phosphate Prodrug Guided by Molecular Modeling

Huifen Chen; Matthew Volgraf; Steven Do; Aleksandr Kolesnikov; Daniel Shore; Vishal A. Verma; Elisia Villemure; Lan Wang; Yong Chen; Baihua Hu; Aijun Lu; Guosheng Wu; Xiaofeng Xu; Po-wai Yuen; Yamin Zhang; Shawn David Erickson; Martin Dahl; Christine E. Brotherton-Pleiss; Suzanne Tay; Justin Ly; Lesley J. Murray; Jun Chen; Desiree Amm; Wienke Lange; David H. Hackos; Rebecca M. Reese; Shannon D. Shields; Joseph P. Lyssikatos; Brian Safina; Anthony Estrada

Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel expressed in sensory neurons where it functions as an irritant sensor for a plethora of electrophilic compounds and is implicated in pain, itch, and respiratory disease. To study its function in various disease contexts, we sought to identify novel, potent, and selective small-molecule TRPA1 antagonists. Herein we describe the evolution of an N-isopropylglycine sulfonamide lead (1) to a novel and potent (4 R,5 S)-4-fluoro-5-methylproline sulfonamide series of inhibitors. Molecular modeling was utilized to derive low-energy three-dimensional conformations to guide ligand design. This effort led to compound 20, which possessed a balanced combination of potency and metabolic stability but poor solubility that ultimately limited in vivo exposure. To improve solubility and in vivo exposure, we developed methylene phosphate prodrug 22, which demonstrated superior oral exposure and robust in vivo target engagement in a rat model of AITC-induced pain.

Collaboration


Dive into the Steven Do's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Safina

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge