Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven E. McKenzie is active.

Publication


Featured researches published by Steven E. McKenzie.


BMC Genomics | 2013

The complex transcriptional landscape of the anucleate human platelet

Paul F. Bray; Steven E. McKenzie; Leonard C. Edelstein; Srikanth Nagalla; Kathleen Delgrosso; Adam Ertel; Joan Kupper; Yi Jing; Eric Londin; Phillipe Loher; Huang-Wen Chen; Paolo Fortina; Isidore Rigoutsos

BackgroundHuman blood platelets are essential to maintaining normal hemostasis, and platelet dysfunction often causes bleeding or thrombosis. Estimates of genome-wide platelet RNA expression using microarrays have provided insights to the platelet transcriptome but were limited by the number of known transcripts. The goal of this effort was to deep-sequence RNA from leukocyte-depleted platelets to capture the complex profile of all expressed transcripts.ResultsFrom each of four healthy individuals we generated long RNA (≥40 nucleotides) profiles from total and ribosomal-RNA depleted RNA preparations, as well as short RNA (<40 nucleotides) profiles. Analysis of ~1 billion reads revealed that coding and non-coding platelet transcripts span a very wide dynamic range (≥16 PCR cycles beyond β-actin), a result we validated through qRT-PCR on many dozens of platelet messenger RNAs. Surprisingly, ribosomal-RNA depletion significantly and adversely affected estimates of the relative abundance of transcripts. Of the known protein-coding loci, ~9,500 are present in human platelets. We observed a strong correlation between mRNAs identified by RNA-seq and microarray for well-expressed mRNAs, but RNASeq identified many more transcripts of lower abundance and permitted discovery of novel transcripts.ConclusionsOur analyses revealed diverse classes of non-coding RNAs, including: pervasive antisense transcripts to protein-coding loci; numerous, previously unreported and abundant microRNAs; retrotransposons; and thousands of novel un-annotated long and short intronic transcripts, an intriguing finding considering the anucleate nature of platelets. The data are available through a local mirror of the UCSC genome browser and can be accessed at:http://cm.jefferson.edu/platelets_2012/.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- And tissue-specific microRNAs

Eric Londina; Phillipe Lohera; Aristeidis G. Telonis; Kevin Quann; Peter M. Clark; Yi Jinga; Eleftheria Hatzimichael; Yohei Kirino; Shozo Honda; Michelle Lally; Bharat Ramratnam; Clay E.S. Comstock; Karen E. Knudsen; Leonard G. Gomella; George L. Spaeth; Lisa A Hark; L. Jay Katz; Agnieszka K. Witkiewicz; Abdolmohamad Rostami; Sergio A. Jimenez; Michael A. Hollingsworth; Jen Jen Yeh; Chad A. Shaw; Steven E. McKenzie; Paul F. Bray; Peter T. Nelson; Simona Zupo; Katrien Van Roosbroeck; Michael J. Keating; Georg A. Calin

Significance MicroRNAs (miRNAs) are small ∼22-nt RNAs that are important regulators of posttranscriptional gene expression. Since their initial discovery, they have been shown to be involved in many cellular processes, and their misexpression is associated with disease etiology. Currently, nearly 2,800 human miRNAs are annotated in public repositories. A key question in miRNA research is how many miRNAs are harbored by the human genome. To answer this question, we examined 1,323 short RNA sequence samples and identified 3,707 novel miRNAs, many of which are human-specific and tissue-specific. Our findings suggest that the human genome expresses a greater number of miRNAs than has previously been appreciated and that many more miRNA molecules may play key roles in disease etiology. Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.


Biophysical Journal | 1995

The biophysics of DNA hybridization with immobilized oligonucleotide probes

Vincent Chan; David J. Graves; Steven E. McKenzie

A mathematical model based on receptor-ligand interactions at a cell surface has been modified and further developed to represent heterogeneous DNA-DNA hybridization on a solid surface. The immobilized DNA molecules with known sequences are called probes, and the DNA molecules in solution with unknown sequences are called targets in this model. Capture of the perfectly complementary target is modeled as a combined reaction-diffusion limited irreversible reaction. In the model, there are two different mechanisms by which targets can hybridize with the complementary probes: direct hybridization from the solution and hybridization by molecules that adsorb nonspecifically and then surface diffuse to the probe. The results indicate that nonspecific adsorption of single-stranded DNA on the surface and subsequent two-dimensional diffusion can significantly enhance the overall reaction rate. Heterogeneous hybridization depends strongly on the rate constants for DNA adsorption/desorption in the non-probe-covered regions of the surface, the two-dimensional (2D) diffusion coefficient, and the size of probes and targets. The model shows that the overall kinetics of DNA hybridization to DNA on a solid support may be an extremely efficient process for physically realistic 2D diffusion coefficients, target concentrations, and surface probe densities. The implication for design and operation of a DNA hybridization surface is that there is an optimal surface probe density when 2D diffusion occurs; values above that optimum do not increase the capture rate. Our model predicts capture rates in agreement with those from recent experimental literature. The results of our analysis predict that several things can be done to improve heterogeneous hybridization: 1) the solution phase target molecules should be about 100 bases or less in size to speed solution-phase and surface diffusion; 2) conditions should be created such that reversible adsorption and two-dimensional diffusion occur in the surface regions between DNA probe molecules; 3) provided that 2) is satisfied, one can achieve results with a sparse probe coverage that are equal to or better than those obtained with a surface totally covered with DNA probes.


Journal of Immunological Methods | 1996

Rapid detection of the FcγRIIA-HR131 ligand-binding polymorphism using an allele-specific restriction enzyme digestion (ASRED)

Xiao-Ming Jiang; Gow Arepally; Mortimer Poncz; Steven E. McKenzie

Abstract A polymorphism of the gene for FcγRIIA, arginine (R) or histidine (H) at position 131, alters the ability of the receptor to bind certain IgG subclasses. Identification of the FcγRIIA-H R 131 genotype has assumed increasing importance in disorders of host defense, immunohematologic diseases and systemic autoimmune disorders. We report a new method for determination of this genotype in which an allele-specific restriction enzyme site is introduced into an FcγRIIA PCR product from genomic DNA, and polymorphism assignment is determined by restriction enzyme digestion followed by agarose gel electrophoresis. This method is more rapid, more reliable and less expensive than currently available methods.


Bioinformatics | 2000

Generation of patterns from gene expression data by assigning confidence to differentially expressed genes

Elisabetta Manduchi; Gregory R. Grant; Steven E. McKenzie; G. Christian Overton; Saul Surrey; Christian J. Stoeckert

MOTIVATION A protocol is described to attach expression patterns to genes represented in a collection of hybridization array experiments. Discrete values are used to provide an easily interpretable description of differential expression. Binning cutoffs for each sample type are chosen automatically, depending on the desired false-positive rate for the predictions of differential expression. Confidence levels are derived for the statement that changes in observed levels represent true changes in expression. We have a novel method for calculating this confidence, which gives better results than the standard methods. Our method reflects the broader change of focus in the field from studying a few genes with many replicates to studying many (possibly thousands) of genes simultaneously, but with relatively few replicates. Our approach differs from standard methods in that it exploits the fact that there are many genes on the arrays. These are used to estimate for each sample type an appropriate distribution that is employed to control the false-positive rate of the predictions made. Satisfactory results can be obtained using this method with as few as two replicates. RESULTS The method is illustrated through applications to macroarray and microarray datasets. The first is an erythroid development dataset that we have generated using nylon filter arrays. Clones for genes whose expression is known in these cells were assigned expression patterns which are in accordance with what was expected and which are not picked up by the standards methods. Moreover, genes differentially expressed between normal and leukemic cells were identified. These included genes whose expression was altered upon induction of the leukemic cells to differentiate. The second application is to the microarray data by Alizadeh et al. (2000). Our results are in accordance with their major findings and offer confidence measures for the predictions made. They also provide new insights for further analysis.


Molecular Immunology | 1993

Differential expression of Fcγ RIIA, Fcγ RIIB and Fcγ RIIC in hematopoietic cells: Analysis of transcripts

Diana L. Cassel; Margaret A. Keller; Saul Surrey; Elias Schwartz; Alan D. Schreiber; Eric Rappaport; Steven E. McKenzie

Abstract Fcγ receptors (Fcγ R) are glycoproteins that function in the immune response through their ability to bind the Fc portion of immunoglobulin G. Of the three human Fcγ R classes, Fcγ RII is most widely distributed among hematopoietic cells and is the only Fcγ R class present on platelets and megakaryocytes. There are three different genes coding for Fcγ RII: Fcγ RIIA, Fcγ RIIB and Fcγ RIIC. Alternative splicing of at least two of these genes results in the production of multiple transcripts. Combining Northern blot analysis with reverse transcription-PCR, we analyzed steady state levels of Fcγ RII mRNA in the megakaryocytic, myeloid and lymphoid lineages. We determined that megakaryocytic cells predominantly contain Fcγ RIIA mRNA; Fcγ RIIA transcripts with and without the transmembrane exon (Fcγ RIIa1 and Fcγ RIIa2, respectively) are present in comparable amounts. In contrast, B lymphocytes do not express Fcγ RIIA mRNAs, but do contain both Fcγ RIIB transcripts, Fcγ RIIb1 and Fcγ RIIb2, as well as the Fcγ RIIC transcript, Fcγ RIIc. Myelomonocytic cells contain mRNAs from all three Fcγ RII genes, predominantly the Fcγ RIIa1 transcript, both Fcγ RIIb1 and Fcγ RIIb2 transcripts and Fcγ RIIc. Lineage-specific expression of the Fcγ RII genes implies both differential regulation of expression and differential function in diverse cells.


Blood | 2014

Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics.

Lukas M. Simon; Leonard C. Edelstein; Srikanth Nagalla; Angela Bergeron Woodley; Edward S. Chen; Xianguo Kong; Lin Ma; Paolo Fortina; Satya P. Kunapuli; Michael Holinstat; Steven E. McKenzie; Jing Fei Dong; Chad A. Shaw; Paul F. Bray

There is little data considering relationships among human RNA, demographic variables, and primary human cell physiology. The platelet RNA and expression-1 study measured platelet aggregation to arachidonic acid, ADP, protease-activated receptor (PAR) 1 activation peptide (PAR1-AP), and PAR4-AP, as well as mRNA and microRNA (miRNA) levels in platelets from 84 white and 70 black healthy subjects. A total of 5911 uniquely mapped mRNAs and 181 miRNAs were commonly expressed and validated in a separate cohort. One hundred twenty-nine mRNAs and 15 miRNAs were differentially expressed (DE) by age, and targets of these miRNAs were over-represented among these mRNAs. Fifty-four mRNAs and 9 miRNAs were DE by gender. Networks of miRNAs targeting mRNAs, both DE by age and gender, were identified. The inverse relationship in these RNA pairs suggests miRNAs regulate mRNA levels on aging and between genders. A simple, interactive public web tool (www.plateletomics.com) was developed that permits queries of RNA levels and associations among RNA, platelet aggregation and demographic variables. Access to these data will facilitate discovery of mechanisms of miRNA regulation of gene expression. These results provide new insights into aging and gender, and future platelet RNA association studies must account for age and gender.


Current Opinion in Hematology | 1998

Fey receptors in phagocytes

Steven E. McKenzie; Alan D. Schreiber

Polymorphonuclear neutrophils, monocytes, and macrophages have numerous important functions in immunity, particularly the ingestion of antibody-coated microorganisms and cells. This review focuses on recent progress in the understanding of the family of receptors for the Fc end of IgG (Fc-γR) on these phagocytes. The control of FcγR expression, the cellular output signals from receptor engagement, and the basis of immediate and downstream signals in phagocyte activation are reviewed. Mice are increasingly being used in transgenic and knockout models of FcγR biology. Relevant differences in the FcγR endowments of mice and humans are detailed.


Blood | 2011

PRT-060318, a novel Syk inhibitor, prevents heparin-induced thrombocytopenia and thrombosis in a transgenic mouse model

Michael P. Reilly; Uma Sinha; Pierrette Andre; Scott M. Taylor; Yvonne Pak; Francis DeGuzman; Nisha Nanda; Anjali Pandey; Moritz Stolla; Wolfgang Bergmeier; Steven E. McKenzie

Heparin-induced thrombocytopenia (HIT) is a major cause of morbidity and mortality resulting from the associated thrombosis. Extensive studies using our transgenic mouse model of HIT have shown that antibodies reactive with heparin-platelet factor 4 complexes lead to FcγRIIA-mediated platelet activation in vitro as well as thrombocytopenia and thrombosis in vivo. We tested PRT-060318 (PRT318), a novel selective inhibitor of the tyrosine kinase Syk, as an approach to HIT treatment. PRT318 completely inhibited HIT immune complex-induced aggregation of both human and transgenic HIT mouse platelets. Transgenic HIT model mice were treated with KKO, a mouse monoclonal HIT-like antibody, and heparin. The experimental group received orally dosed PRT318, whereas the control group received vehicle. Nadir platelet counts of PRT318-treated mice were significantly higher than those of control mice. When examined with a novel thrombosis visualization technique, mice treated with PRT318 had significantly reduced thrombosis. The Syk inhibitor PRT318 thus prevented both HIT immune complex-induced thrombocytopenia and thrombosis in vivo, demonstrating its activity in HIT.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Cholesterol Enrichment of Human Monocyte/Macrophages Induces Surface Exposure of Phosphatidylserine and the Release of Biologically-Active Tissue Factor–Positive Microvesicles

Ming-Lin Liu; Michael P. Reilly; Peter Casasanto; Steven E. McKenzie; Kevin Jon Williams

Objective—Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Methods and Results—Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Conclusions—Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.

Collaboration


Dive into the Steven E. McKenzie's collaboration.

Top Co-Authors

Avatar

Michael P. Reilly

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Paul F. Bray

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Saul Surrey

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mortimer Poncz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas B. Cines

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lubica Rauova

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Scott M. Taylor

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Paolo Fortina

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge